Anzhen Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3616615/publications.pdf

Version: 2024-02-01

1040056 888059 20 336 9 17 citations h-index g-index papers 20 20 20 314 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images. Precision Agriculture, 2022, 23, 748-767.	6.0	4
2	Impacts of Irrigation Time and Well Depths on Farmers' Costs and Benefits in Maize Production. Agriculture (Switzerland), 2022, 12, 456.	3.1	1
3	Estimating the Impacts of Plant Internal Nitrogen Deficit at Key Top Dressing Stages on Corn Productivity and Intercepted Photosynthetic Active Radiation. Frontiers in Plant Science, 2022, 13, 864258.	3. 6	2
4	Effects of waterlogging at different stages on growth and ear quality of waxy maize. Agricultural Water Management, 2022, 266, 107603.	5 . 6	15
5	Response of Summer Maize Growth and Water Use to Different Irrigation Regimes. Agronomy, 2022, 12, 768.	3.0	8
6	Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates. Agricultural Water Management, 2021, 247, 106726.	5.6	26
7	Analysis of the Accuracy of an FDR Sensor in Soil Moisture Measurement under Laboratory and Field Conditions. Journal of Sensors, 2021, 2021, 1-10.	1.1	9
8	Estimating the Growth Indices and Nitrogen Status Based on Color Digital Image Analysis During Early Growth Period of Winter Wheat. Frontiers in Plant Science, 2021, 12, 619522.	3.6	5
9	Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield. Agriculture (Switzerland), 2021, 11, 958.	3.1	9
10	Exploring the nitrogen source-sink ratio to quantify ear nitrogen accumulation in maize and wheat using critical nitrogen dilution curve. Field Crops Research, 2021, 274, 108332.	5.1	17
11	Structural Equation Modeling of Soil Moisture Effects on Evapotranspiration of Maize in the North China Plain. The National Academy of Sciences, India, 2020, 43, 219-224.	1.3	6
12	Silicon-Mediated Physiological and Agronomic Responses of Maize to Drought Stress Imposed at the Vegetative and Reproductive Stages. Agronomy, 2020, 10, 1136.	3.0	14
13	Insentek Sensor: An Alternative to Estimate Daily Crop Evapotranspiration for Maize Plants. Water (Switzerland), 2019, 11, 25.	2.7	21
14	Incorporation of Manure into Ridge and Furrow Planting System Boosts Yields of Maize by Optimizing Soil Moisture and Improving Photosynthesis. Agronomy, 2019, 9, 865.	3.0	16
15	Simple Assessment of Nitrogen Nutrition Index in Summer Maize by Using Chlorophyll Meter Readings. Frontiers in Plant Science, 2018, 9, 11.	3.6	41
16	Evaluating Responses of Crop Water Use, Soil Water Storage and Infiltration to Precipitation Using Insentek Probes. , 2018, , .		1
17	Maize Yield as a Function of Water Availability across Precipitation Years in the North China Plain. Crop Science, 2017, 57, 2226-2237.	1.8	5
18	Soil Moisture and Crop Evapotranspiration Forecast for Winter Wheat Based on Weather Information in North China Plain. , 2017, , .		3

Anzhen Qin

#	Article	IF	CITATIONS
19	Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China. PLoS ONE, 2016, 11, e0153809.	2.5	9
20	Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agronomy for Sustainable Development, 2014, 34, 535-543.	5 . 3	124