Joseph V Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3616447/publications.pdf

Version: 2024-02-01

70 2,578 24 49 papers citations h-index g-index

73 73 73 2024
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effects of Al:Si and (Al+Na):Si ratios on the static corrosion of sodiumâ€boroaluminosilicate glasses. International Journal of Applied Glass Science, 2022, 13, 94-111.	1.0	10
2	On the dissolution of a borosilicate glass with the use of isotopic tracing – Insights into the mechanism for the long-term dissolution rate. Geochimica Et Cosmochimica Acta, 2022, 318, 213-229.	1.6	4
3	Effects of Al:Si and (AlÂ+ÂNa):Si ratios on the properties of the international simple glass, part I: Physical properties. Journal of the American Ceramic Society, 2021, 104, 167-182.	1.9	15
4	Effects of Al:Si and (AlÂ+ÂNa):Si ratios on the properties of the international simple glass, part II: Structure. Journal of the American Ceramic Society, 2021, 104, 183-207.	1.9	29
5	Predicting zeolites' stability during the corrosion of nuclear waste immobilization glasses: Comparison with glass corrosion experiments. Journal of Nuclear Materials, 2021, 547, 152813.	1.3	3
6	Seeded Stage III glass dissolution behavior of a statistically designed glass matrix. Journal of the American Ceramic Society, 2021, 104, 4145-4162.	1.9	9
7	Recent Advances in Corrosion Science Applicable To Disposal of High-Level Nuclear Waste. Chemical Reviews, 2021, 121, 12327-12383.	23.0	52
8	Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography. Scripta Materialia, 2021, 203, 114110.	2.6	7
9	Vanadium Oxidation States and Structural Role in Aluminoborosilicate Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2021, 125, 12365-12377.	1.2	8
10	Acceleration of glass alteration rates induced by zeolite seeds at controlled pH. Applied Geochemistry, 2020, 113, 104515.	1.4	16
11	Reply to: How much does corrosion of nuclear waste matrices matter. Nature Materials, 2020, 19, 962-963.	13.3	7
12	zeo19: A thermodynamic database for assessing zeolite stability during the corrosion of nuclear waste immobilization glasses. Npj Materials Degradation, 2020, 4, .	2.6	14
13	Comparative structural investigations of nuclear waste glass alteration layers and sol-gel synthesized aerogels. Npj Materials Degradation, 2020, 4, .	2.6	5
14	Self-accelerated corrosion of nuclear waste forms at material interfaces. Nature Materials, 2020, 19, 310-316.	13.3	61
15	Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass. Npj Materials Degradation, 2020, 4, .	2.6	29
16	Near-field corrosion interactions between glass and corrosion resistant alloys. Npj Materials Degradation, 2020, 4, .	2.6	15
17	Multi-glass investigation of Stage III glass dissolution behavior from 22 to 90â€-°C triggered by the addition of zeolite phases. Journal of Nuclear Materials, 2019, 523, 490-501.	1.3	16
18	In-situ monitoring of seeded and unseeded stage III corrosion using Raman spectroscopy. Npj Materials Degradation, 2019, 3, .	2.6	10

#	Article	IF	CITATIONS
19	Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning. Npj Materials Degradation, 2019, 3, .	2.6	59
20	Sol–Gel Synthesis and Characterization of Gels with Compositions Relevant to Hydrated Glass Alteration Layers. ACS Omega, 2019, 4, 16257-16269.	1.6	11
21	Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: Toward development of high crack resistant glasses for nuclear waste disposal. Journal of Non-Crystalline Solids, 2019, 515, 88-97.	1.5	20
22	Investigating the Durability of Iodine Waste Forms in Dilute Conditions. Materials, 2019, 12, 686.	1.3	21
23	Atomistic origin of the passivation effect in hydrated silicate glasses. Npj Materials Degradation, 2019, 3, .	2.6	25
24	Physical and optical properties of the International Simple Glass. Npj Materials Degradation, 2019, 3, .	2.6	37
25	Chemical composition of calcium-silicate-hydrate gels: Competition between kinetics and thermodynamics. Physical Review Materials, 2019, 3, .	0.9	15
26	The dissolution behavior of borosilicate glasses in far-from equilibrium conditions. Geochimica Et Cosmochimica Acta, 2018, 226, 132-148.	1.6	47
27	A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. Npj Materials Degradation, 2018, 2, .	2.6	150
28	Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry. Journal of Non-Crystalline Solids, 2018, 481, 260-266.	1.5	21
29	Simplifying a solution to a complex puzzle. Npj Materials Degradation, 2018, 2, .	2.6	6
30	Adaptation of the GRAAL model of Glass Reactivity to accommodate non-linear diffusivity. Journal of Nuclear Materials, 2018, 512, 79-93.	1.3	11
31	Method for the in situ Measurement of pH and Alteration Extent for Aluminoborosilicate Glasses Using Raman Spectroscopy. Analytical Chemistry, 2018, 90, 11812-11819.	3.2	8
32	A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy, 2018, 194, 89-99.	0.8	64
33	Impacts of glass composition, pH, and temperature on glass forward dissolution rate. Npj Materials Degradation, 2018, 2, .	2.6	46
34	Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 45-51.	0.6	5
35	The use of positrons to survey alteration layers on synthetic nuclear waste glasses. Journal of Nuclear Materials, 2017, 490, 75-84.	1.3	17
36	Effects of optical dopants and laser wavelength on atom probe tomography analyses of borosilicate glasses. Journal of the American Ceramic Society, 2017, 100, 4801-4815.	1.9	18

#	Article	IF	CITATIONS
37	Nanoscale imaging of Li and B in nuclear waste glass, a comparison of ToF-SIMS, NanoSIMS, and APT. Surface and Interface Analysis, 2016, 48, 1392-1401.	0.8	14
38	Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance. Journal of Physical Chemistry C, 2016, 120, 9374-9384.	1.5	30
39	Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses. Journal of Non-Crystalline Solids, 2016, 452, 161-168.	1.5	15
40	Glass Corrosion in the Presence of Iron-Bearing Materials and Potential Corrosion Suppressors. Materials Research Society Symposia Proceedings, 2015, 1744, 139-144.	0.1	7
41	The initial dissolution rates of simulated UK Magnox–ThORP blend nuclear waste glass as a function of pH, temperature and waste loading. Mineralogical Magazine, 2015, 79, 1529-1542.	0.6	25
42	Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information. Journal of the American Society for Mass Spectrometry, 2015, 26, 1283-1290.	1.2	24
43	The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass. Geochimica Et Cosmochimica Acta, 2015, 151, 68-85.	1.6	165
44	Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses. Journal of Non-Crystalline Solids, 2015, 408, 142-149.	1.5	18
45	Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment. Journal of Nuclear Materials, 2014, 444, 481-492.	1.3	82
46	Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses. Journal of Non-Crystalline Solids, 2014, 405, 83-90.	1.5	18
47	Characterization and modeling of the cemented sediment surrounding the Iulia Felix glass. Applied Geochemistry, 2014, 41, 107-114.	1.4	6
48	NanoSIMS imaging alteration layers of a leached SON68 glass via a FIB-made wedged crater. Surface and Interface Analysis, 2014, 46, 233-237.	0.8	6
49	Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment. Chemical Geology, 2013, 349-350, 99-109.	1.4	105
50	Current Understanding and Remaining Challenges in Modeling Longâ€∓erm Degradation of Borosilicate Nuclear Waste Glasses. International Journal of Applied Glass Science, 2013, 4, 283-294.	1.0	208
51	The effect of concentration on the structure and crystallinity of a cementitious waste form for caustic wastes. Journal of Nuclear Materials, 2013, 437, 332-340.	1.3	6
52	Monte Carlo simulations of the corrosion of aluminoborosilicate glasses. Journal of Non-Crystalline Solids, 2013, 378, 273-281.	1.5	26
53	An international initiative on long-term behavior of high-level nuclear waste glass. Materials Today, 2013, 16, 243-248.	8.3	417
54	Solid-state NMR examination of alteration layers on nuclear waste glasses. Journal of Non-Crystalline Solids, 2013, 369, 44-54.	1.5	8

#	Article	IF	CITATIONS
55	Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine. RSC Advances, 2011, 1, 1704.	1.7	85
56	Tribology–Structure Relationships in Silicon Oxycarbide Thin Films. International Journal of Applied Ceramic Technology, 2010, 7, 675-686.	1.1	11
57	Frequency dependent electrical measurements of amorphous GeSbSe chalcogenide thin films. Applied Physics Letters, 2010, 96, .	1.5	20
58	Magnetotransport properties of high quality Co:ZnO and Mn:ZnO single crystal pulsed laser deposition films: Pitfalls associated with magnetotransport on high resistivity materials. Review of Scientific Instruments, 2010, 81, 063902.	0.6	10
59	DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applications. IEEE Transactions on Nuclear Science, 2009, 56, 863-868.	1.2	3
60	Rutherford backscattering spectrometry characterization of nanoporous chalcogenide thin films grown at oblique angles. Journal of Analytical Atomic Spectrometry, 2008, 23, 981.	1.6	5
61	Medium-range order in silicon oxycarbide glass by fluctuation electron microscopy. Journal of Physics Condensed Matter, 2007, 19, 455205.	0.7	9
62	Surface microstructure of GeSbSe chalcogenide thin films grown at oblique angle. Journal of Applied Physics, 2007, 101, 083513.	1.1	19
63	Spectral behavior of the optical constants in the visibleâ-near infrared of GeSbSe chalcogenide thin films grown at glancing angle. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 587-591.	0.9	26
64	Synthesis and characterization of inorganic silicon oxycarbide glass thin films by reactive rf-magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 153-159.	0.9	41
65	Planar chalcogenide glass waveguides for IR evanescent wave sensors. Journal of Non-Crystalline Solids, 2006, 352, 584-588.	1.5	78
66	Characterization of sculptured thin films. , 2004, , .		14
67	Fabrication of chalcogenide glass waveguide for IR evanescent wave sensors., 2004, 5593, 637.		2
68	Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature, 2000, 406, 169-172.	13.7	150
69	Characterization of multi-phase aerogels by contrast-matching SANS. Journal of Non-Crystalline Solids, 1998, 225, 234-238.	1.5	11
70	Development of Glass Compositions to Immobilize Alkali, Alkaline Earth, Lanthanide and Transition Metal Fission Products from Nuclear Fuel Reprocessing. Ceramic Transactions, 0, , 1-10.	0.1	0