
M Paula Macedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3616128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advancing the global public health agenda for NAFLD: a consensus statement. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 60-78.	8.2	330
2	Prediabetes blunts DPP4 genetic control of postprandial glycaemia and insulin secretion. Diabetologia, 2022, 65, 861-871.	2.9	3
3	Messages from the Small Intestine Carried by Extracellular Vesicles in Prediabetes: A Proteomic Portrait. Journal of Proteome Research, 2022, 21, 910-920.	1.8	4
4	Insights into Macrophage/Monocyte-Endothelial Cell Crosstalk in the Liver: A Role for Trem-2. Journal of Clinical Medicine, 2021, 10, 1248.	1.0	7
5	Loss of postprandial insulin clearance control by Insulin-degrading enzyme drives dysmetabolism traits. Metabolism: Clinical and Experimental, 2021, 118, 154735.	1.5	18
6	Insulinâ€degrading enzyme: an ally against metabolic and neurodegenerative diseases. Journal of Pathology, 2021, 255, 346-361.	2.1	29
7	Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. Nanomaterials, 2020, 10, 2027.	1.9	28
8	Insights from qualitative research on NAFLD awareness with a cohort of T2DM patients: time to go public with insulin resistance?. BMC Public Health, 2020, 20, 1142.	1.2	25
9	Insulin: Trigger and Target of Renal Functions. Frontiers in Cell and Developmental Biology, 2020, 8, 519.	1.8	24
10	S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance. Antioxidants, 2020, 9, 870.	2.2	2
11	Metabolic Footprint, towards Understanding Type 2 Diabetes beyond Glycemia. Journal of Clinical Medicine, 2020, 9, 2588.	1.0	11
12	Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. International Journal of Molecular Sciences, 2020, 21, 5820.	1.8	38
13	Review of methods for detecting glycemic disorders. Diabetes Research and Clinical Practice, 2020, 165, 108233.	1.1	108
14	Urine-Derived Stem Cells: Applications in Regenerative and Predictive Medicine. Cells, 2020, 9, 573.	1.8	43
15	Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning. European Journal of Preventive Cardiology, 2020, 27, 1639-1646.	0.8	37
16	Trem-2 Promotes Emergence of Restorative Macrophages and Endothelial Cells During Recovery From Hepatic Tissue Damage. Frontiers in Immunology, 2020, 11, 616044.	2.2	34
17	Clustering Clinical Data in R. Methods in Molecular Biology, 2020, 2051, 309-343.	0.4	5
18	Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. International Journal of Molecular Sciences, 2019, 20, 4049.	1.8	59

M PAULA MACEDO

#	Article	IF	CITATIONS
19	Design and Synthesis of CNS-targeted Flavones and Analogues with Neuroprotective Potential Against H2O2- and Al²1-42-Induced Toxicity in SH-SY5Y Human Neuroblastoma Cells. Pharmaceuticals, 2019, 12, 98.	1.7	11
20	Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue. Metabolic Engineering, 2019, 56, 69-76.	3.6	30
21	Transfer of glucose hydrogens via acetyl-CoA, malonyl-CoA, and NADPH to fatty acids during de novo lipogenesis. Journal of Lipid Research, 2019, 60, 2050-2056.	2.0	19
22	2-Deoxyglycosylation towards more effective and bioavailable neuroprotective molecules inspired by nature. Pure and Applied Chemistry, 2019, 91, 1209-1221.	0.9	5
23	Data on metabolic profile of insulin-degrading enzyme knockout mice. Data in Brief, 2019, 25, 104023.	0.5	2
24	Knockout of insulin-degrading enzyme leads to mice testicular morphological changes and impaired sperm quality. Molecular and Cellular Endocrinology, 2019, 486, 11-17.	1.6	12
25	27th Annual Meeting of the European Group for the study of Insulin Resistance, Lisbon, Portugal, 8–9th May 2019. Cardiovascular Endocrinology and Metabolism, 2019, 8, 88-89.	0.5	0
26	Mercapturate Pathway in the Tubulocentric Perspective of Diabetic Kidney Disease. Nephron, 2019, 143, 17-23.	0.9	17
27	Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Medicinal Research Reviews, 2018, 38, 261-324.	5.0	55
28	Dipeptidyl Peptidaseâ€4 Is a Proâ€Recovery Mediator During Acute Hepatotoxic Damage and Mirrors Severe Shifts in Kupffer Cells. Hepatology Communications, 2018, 2, 1080-1094.	2.0	10
29	Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. Journal of Clinical Investigation, 2018, 128, 5335-5350.	3.9	57
30	Direct analysis of [6,6-2H2]glucose and [U-13C6]glucose dry blood spot enrichments by LC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1022, 242-248.	1.2	3
31	Methylsulfonylmethane (MSM), an organosulfur compound, is effective against obesity-induced metabolic disorders in mice. Metabolism: Clinical and Experimental, 2016, 65, 1508-1521.	1.5	25
32	Diabetes hinders community-acquired pneumonia outcomes in hospitalized patients. BMJ Open Diabetes Research and Care, 2016, 4, e000181.	1.2	35
33	Mechanisms by which the thiazolidinedione troglitazone protects against sucroseâ€induced hepatic fat accumulation and hyperinsulinaemia. British Journal of Pharmacology, 2016, 173, 267-278.	2.7	14
34	Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chemical Neuroscience, 2016, 7, 131-142.	1.7	118
35	Postprandial insulin action relies on meal composition and hepatic parasympathetics: dependency on glucose and amino acids. Journal of Nutritional Biochemistry, 2016, 27, 70-78.	1.9	4
36	HbA1c, Fructosamine, and Glycated Albumin in the Detection of Dysglycaemic Conditions. Current Diabetes Reviews, 2015, 12, 14-19.	0.6	70

M PAULA MACEDO

#	Article	IF	CITATIONS
37	How Inflammation Impinges on NAFLD: A Role for Kupffer Cells. BioMed Research International, 2015, 2015, 1-11.	0.9	100
38	Mechanisms through which a small protein and lipid preload improves glucose tolerance. Diabetologia, 2015, 58, 2503-2512.	2.9	41
39	Acute Glucagon Induces Postprandial Peripheral Insulin Resistance. PLoS ONE, 2015, 10, e0127221.	1.1	10
40	Prevalence and impact of Diabetes mellitus (DM) among hospitalized community-acquired pneumonia (CAP) patients. , 2015, , .		0
41	Bridges in translational medicine: a case for metabolism, inflammation, and nutrition. Canadian Journal of Physiology and Pharmacology, 2014, 92, iii-iii.	0.7	Ο
42	Risk of postprandial insulin resistance: The liver/vagus rapport. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 67-77.	2.6	17
43	Exploiting the Therapeutic Potential of 8-β- <scp>d</scp> -Clucopyranosylgenistein: Synthesis, Antidiabetic Activity, and Molecular Interaction with Islet Amyloid Polypeptide and Amyloid β-Peptide (1–42). Journal of Medicinal Chemistry, 2014, 57, 9463-9472.	2.9	39
44	NOS2 Variants Reveal a Dual Genetic Control of Nitric Oxide Levels, Susceptibility to Plasmodium Infection, and Cerebral Malaria. Infection and Immunity, 2014, 82, 1287-1295.	1.0	23
45	Assessment of methods and indexes of insulin sensitivity. Revista Portuguesa De Endocrinologia Diabetes E Metabolismo, 2014, 9, 65-73.	0.1	31
46	Effects of CPAP on nitrate and norepinephrine levels in severe and mild-moderate sleep apnea. BMC Pulmonary Medicine, 2013, 13, 13.	0.8	31
47	Disposition of [U-2H7]glucose into hepatic glycogen in rat and in seabass. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 166, 316-322.	0.8	14
48	Systemic inhibition of nitric oxide synthesis in non-diabetic individuals produces a significant deterioration in glucose tolerance by increasing insulin clearance and inhibiting insulin secretion. Diabetologia, 2013, 56, 1183-1191.	2.9	37
49	² H enrichment distribution of hepatic glycogen from ² H ₂ O reveals the contribution of dietary fructose to glycogen synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E384-E391.	1.8	15
50	Postprandial Insulin Resistance in Zucker Diabetic Fatty Rats is Associated with Parasympatheticâ€Nitric Oxide Axis Deficiencies. Journal of Neuroendocrinology, 2012, 24, 1346-1355.	1.2	6
51	Postprandial but not fasting insulin resistance is an early identifier of dysmetabolism in overweight subjects. Canadian Journal of Physiology and Pharmacology, 2012, 90, 923-931.	0.7	7
52	Understanding the in-vivo relevance of <i>S</i> -nitrosothiols in insulin action. Canadian Journal of Physiology and Pharmacology, 2012, 90, 887-894.	0.7	8
53	Bethanechol and N-acetylcysteine mimic feeding signals and reverse insulin resistance in fasted and sucrose-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 2011, 89, 135-142.	0.7	13
54	Understanding Postprandial Glucose Clearance by Peripheral Organs: The Role of the Hepatic Parasympathetic System. Journal of Neuroendocrinology, 2011, 23, 1288-1295.	1.2	30

M Paula Macedo

#	Article	IF	CITATIONS
55	High-fat diet results in postprandial insulin resistance that involves parasympathetic dysfunction. British Journal of Nutrition, 2010, 104, 1450-1459.	1.2	18
56	HISS-dependent insulin resistance (HDIR) in aged rats is associated with adiposity, progresses to syndrome X, and is attenuated by a unique antioxidant cocktail. Experimental Gerontology, 2008, 43, 790-800.	1.2	20
57	Meal-induced insulin sensitization and its parasympathetic regulation in humans. Canadian Journal of Physiology and Pharmacology, 2008, 86, 880-888.	0.7	26
58	Loss of Postprandial Insulin Sensitization During Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 560-565.	1.7	17
59	Hepatic parasympathetic role in insulin resistance on an animal model of hypertension. Metabolism: Clinical and Experimental, 2007, 56, 227-233.	1.5	11
60	Hepatic-dependent and -independent Insulin Actions Are Impaired in the Obese Zucker Rat Model*. Obesity, 2007, 15, 314-321.	1.5	6
61	A new technique to assess insulin sensitivity in humans: the rapid insulin sensitivity test (RIST). Proceedings of the Western Pharmacology Society, 2007, 50, 105-9.	0.1	6
62	Insulin resistance in two animal models of obesity: A comparison of HISS-dependent and HISS-independent insulin action in high-fat diet-fed and Zucker rats. Proceedings of the Western Pharmacology Society, 2007, 50, 110-4.	0.1	7
63	Carvedilol Action Is Dependent on Endogenous Production of Nitric Oxide. American Journal of Hypertension, 2006, 19, 419-425.	1.0	30
64	In Vitro Nitrosation of Insulin A- and B-Chains. European Journal of Mass Spectrometry, 2006, 12, 331-338.	0.5	3
65	Meal-induced insulin sensitization in conscious and anaesthetized rat models comparing liquid mixed meal with glucose and sucrose. British Journal of Nutrition, 2006, 95, 288-295.	1.2	25
66	Co-administration of glutathione and nitric oxide enhances insulin sensitivity in Wistar rats. British Journal of Pharmacology, 2006, 147, 959-965.	2.7	31
67	Insulin resistance induced by sucrose feeding in rats is due to an impairment of the hepatic parasympathetic nerves. Diabetologia, 2005, 48, 976-983.	2.9	59
68	Insulin sensitivity is mediated by the activation of the ACh/NO/cGMP pathway in rat liver. American Journal of Physiology - Renal Physiology, 2004, 287, G527-G532.	1.6	38
69	40th EASD Annual Meeting of the European Association for the Study of Diabetes. Diabetologia, 2004, 47, A1-A464.	2.9	41
70	Defective hepatic nitric oxide action results in HISS-dependent insulin resistance in spontaneously hypertensive rats. Proceedings of the Western Pharmacology Society, 2004, 47, 103-4.	0.1	3
71	Hepatic glutathione and nitric oxide are critical for hepatic insulin-sensitizing substance action. American Journal of Physiology - Renal Physiology, 2003, 284, G588-G594.	1.6	67
72	Hepatic guanylyl cyclase inhibition induces HISS-dependent insulin resistance. Proceedings of the Western Pharmacology Society, 2002, 45, 57-8.	0.1	8

M PAULA MACEDO

#	Article	IF	CITATIONS
73	Hepatic parasympathetic (HISS) control of insulin sensitivity determined by feeding and fasting. American Journal of Physiology - Renal Physiology, 2001, 281, G29-G36.	1.6	74
74	Hepatic metabolic effects of norepinephrine are potentiated by nitric oxide. Proceedings of the Western Pharmacology Society, 2001, 44, 23-4.	0.1	0
75	Nitric oxide synthase inhibition decreases output of hepatic insulin sensitizing substance (HISS), which is reversed by SIN-1 but not by nitroprusside. Proceedings of the Western Pharmacology Society, 2001, 44, 25-6.	0.1	6
76	Effect of the hepatic insulin sensitizing substance in the spontaneously hypertensive rat. Proceedings of the Western Pharmacology Society, 2001, 44, 27-8.	0.1	3
77	The fatty Zucker rat fa/fa shows a dysfunction of the HISS-dependent and -independent components of insulin action. Proceedings of the Western Pharmacology Society, 2001, 44, 29-30.	0.1	3
78	The action of hepatic insulin sensitizing substance is decreased in rats on a high-sucrose diet. Proceedings of the Western Pharmacology Society, 2001, 44, 31-2.	0.1	4
79	Tonic activation of A2A adenosine receptors unmasks, and of A1 receptors prevents, a facilitatory action of calcitonin gene-related peptide in the rat hippocampus. British Journal of Pharmacology, 2000, 129, 374-380.	2.7	28
80	Nitric Oxide and the Hepatic Circulation. , 2000, , 243-258.		4
81	Rapid insulin sensitivity test (RIST). Canadian Journal of Physiology and Pharmacology, 1998, 76, 1080-1086.	0.7	55
82	Shear-induced modulation of vasoconstriction in the hepatic artery and portal vein by nitric oxide. American Journal of Physiology - Renal Physiology, 1998, 274, G253-G260.	1.6	28
83	Rapid insulin sensitivity test (RIST). Canadian Journal of Physiology and Pharmacology, 1998, 76, 1080-6.	0.7	37
84	Hepatic Circulation and Toxicology. Drug Metabolism Reviews, 1997, 29, 369-395.	1.5	13
85	Potentiation to vasodilators by nitric oxide synthase blockade in superior mesenteric but not hepatic artery. American Journal of Physiology - Renal Physiology, 1997, 272, G507-G514.	1.6	6
86	Autoregulatory capacity in the superior mesenteric artery is attenuated by nitric oxide. American Journal of Physiology - Renal Physiology, 1996, 271, G400-G404.	1.6	5
87	Shear-induced modulation by nitric oxide of sympathetic nerves in the superior mesenteric artery. Canadian Journal of Physiology and Pharmacology, 1996, 74, 692-700.	0.7	21
88	Shear-induced modulation by nitric oxide of sympathetic nerves in the superior mesenteric artery. Canadian Journal of Physiology and Pharmacology, 1996, 74, 692-700.	0.7	3
89	Nitric oxide synthase antagonism potentiates pressure-flow autoregulation in the superior mesenteric artery. Proceedings of the Western Pharmacology Society, 1995, 38, 33-4.	0.1	1
90	Nitric oxide suppression of norepinephrine release from nerves in the superior mesenteric artery. Proceedings of the Western Pharmacology Society, 1994, 37, 103-4.	0.1	3

91 Coupling deoxy sugars to polyphenols: Neuroprotection and bioavailability. , 0, , . 0	#	Article	IF	CITATIONS
	91	Coupling deoxy sugars to polyphenols: Neuroprotection and bioavailability. , 0, , .		0