Kevin T O'byrne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3615842/publications.pdf

Version: 2024-02-01

70 3,016 31 52
papers citations h-index g-index

77 77 1596
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Regulation of the gonadotropinâ€releasing hormone neuron during stress. Journal of Neuroendocrinology, 2022, 34, e13098.	1.2	8
2	Role of Posterodorsal Medial Amygdala Urocortin-3 in Pubertal Timing in Female Mice. Frontiers in Endocrinology, 2022, 13 , .	1.5	4
3	Urocortin3 in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology, 2021, 162, .	1.4	10
4	Modulation of pulsatile GnRH dynamics across the ovarian cycle via changes in the network excitability and basal activity of the arcuate kisspeptin network. ELife, 2021, 10, .	2.8	17
5	Optogenetic stimulation of kisspeptin neurones within the posterodorsal medial amygdala increases luteinising hormone pulse frequency in female mice. Journal of Neuroendocrinology, 2020, 32, e12823.	1.2	27
6	Dynamic Hormone Control of Stress and Fertility. Frontiers in Physiology, 2020, 11, 598845.	1.3	22
7	Dynorphin and GABAA Receptor Signaling Contribute to Progesterone's Inhibition of the LH Surge in Female Mice. Endocrinology, 2020, 161, .	1.4	6
8	The Origin of GnRH Pulse Generation: An Integrative Mathematical-Experimental Approach. Journal of Neuroscience, 2019, 39, 9738-9747.	1.7	49
9	Lipopolysaccharide reduces gonadotrophin-releasing hormone (GnRH) gene expression: role of RFamide-related peptide-3 and kisspeptin. Reproduction, Fertility and Development, 2019, 31, 1134.	0.1	20
10	Role of the posterodorsal medial amygdala in predator odour stressâ€induced puberty delay in female rats. Journal of Neuroendocrinology, 2019, 31, e12719.	1.2	16
11	Kisspeptin as a Behavioral Hormone. Seminars in Reproductive Medicine, 2019, 37, 056-063.	0.5	14
12	The Roles of the Amygdala Kisspeptin System. Seminars in Reproductive Medicine, 2019, 37, 064-070.	0.5	7
13	Maternal High Triglyceride Levels During Early Pregnancy and Risk of Preterm Delivery: A Retrospective Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1249-1258.	1.8	18
14	Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. Journal of Neuroendocrinology, 2018, 30, e12572.	1.2	61
15	Hypothalamic effects of progesterone on regulation of the pulsatile and surge release of luteinising hormone in female rats. Scientific Reports, 2017, 7, 8096.	1.6	38
16	Role of amygdala kisspeptin in pubertal timing in female rats. PLoS ONE, 2017, 12, e0183596.	1.1	30
17	Posterodorsal Medial Amygdala Mediates Tailâ€Pinch Induced Food Intake in Female Rats. Journal of Neuroendocrinology, 2016, 28, .	1.2	9
18	Kisspeptin in the medial amygdala and sexual behavior in male rats. Neuroscience Letters, 2016, 627, 13-17.	1.0	45

#	Article	IF	CITATIONS
19	The effects of small litter rearing on ovarian function at puberty and adulthood in the rat. Reproductive Biology, 2016, 16, 130-137.	0.9	5
20	Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Structure and Function, 2016, 221, 2035-2047.	1.2	66
21	Hypothalamic Prolactin Regulation of Luteinizing Hormone Secretion in the Female Rat. Endocrinology, 2015, 156, 2880-2892.	1.4	10
22	Stress-induced inhibition of LH pulses in female rats: role of GABA in arcuate nucleus. Journal of Molecular Endocrinology, 2015, 55, 9-19.	1.1	19
23	Relative Importance of the Arcuate and Anteroventral Periventricular Kisspeptin Neurons in Control of Puberty and Reproductive Function in Female Rats. Endocrinology, 2015, 156, 2619-2631.	1.4	64
24	Stress and the Reproductive System. , 2015, , 1637-1660.		6
25	The Posterodorsal Medial Amygdala Regulates the Timing of Puberty Onset in Female Rats. Endocrinology, 2015, 156, 3725-3736.	1.4	37
26	Neurokinin B Receptor Antagonism Decreases Luteinising Hormone Pulse Frequency and Amplitude and Delays Puberty Onset in the Female Rat. Journal of Neuroendocrinology, 2014, 26, 521-527.	1.2	21
27	Neurokinin B Signaling in the Female Rat: a Novel Link Between Stress and Reproduction. Endocrinology, 2014, 155, 2589-2601.	1.4	31
28	Overexpression of Corticotropin Releasing Factor in the Central Nucleus of the Amygdala Advances Puberty and Disrupts Reproductive Cycles in Female Rats. Endocrinology, 2014, 155, 3934-3944.	1.4	22
29	Quantification of Rat Kisspeptin Using a Novel Radioimmunoassay. PLoS ONE, 2014, 9, e97611.	1.1	11
30	Stress Regulation of Kisspeptin in the Modulation of Reproductive Function. Advances in Experimental Medicine and Biology, 2013, 784, 431-454.	0.8	17
31	The Inhibitory Effects of Neurokinin B on GnRH Pulse Generator Frequency in the Female Rat. Endocrinology, 2012, 153, 307-315.	1.4	101
32	Suppression of the GnRH Pulse Generator by Neurokinin B Involves a \hat{I}^2 -Opioid Receptor-Dependent Mechanism. Endocrinology, 2012, 153, 4894-4904.	1.4	82
33	High-Fat Diet Increases LH Pulse Frequency and Kisspeptin-Neurokinin B Expression in Puberty-Advanced Female Rats. Endocrinology, 2012, 153, 4422-4431.	1.4	77
34	GPR54-Dependent Stimulation of Luteinizing Hormone Secretion by Neurokinin B in Prepubertal Rats. PLoS ONE, 2012, 7, e44344.	1.1	59
35	The Role of GABAergic Signalling in Stressâ€Induced Suppression of Gonadotrophinâ€Releasing Hormone Pulse Generator Frequency in Female Rats. Journal of Neuroendocrinology, 2012, 24, 477-488.	1.2	18
36	The Role of the Bed Nucleus of the Stria Terminalis in Stress-Induced Inhibition of Pulsatile Luteinising Hormone Secretion in the Female Rat. Journal of Neuroendocrinology, 2011, 23, 3-11.	1.2	18

#	Article	IF	CITATIONS
37	The Role of the Medial and Central Amygdala in Stress-Induced Suppression of Pulsatile LH Secretion in Female Rats. Endocrinology, 2011, 152, 545-555.	1.4	55
38	Neonatal programming by immunological challenge: effects on ovarian function in the adult rat. Reproduction, 2011, 141, 241-248.	1.1	39
39	Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Research, 2010, 1364, 153-163.	1.1	77
40	Corticotrophinâ€Releasing Factor Alters the Timing of Puberty in the Female Rat. Journal of Neuroendocrinology, 2010, 22, 102-109.	1.2	40
41	Kisspeptin Signalling in the Hypothalamic Arcuate Nucleus Regulates GnRH Pulse Generator Frequency in the Rat. PLoS ONE, 2009, 4, e8334.	1.1	163
42	Downâ€Regulation of Hypothalamic <i>Kisspeptin</i> and its Receptor, <i>Kiss1r</i> , mRNA Expression is Associated with Stressâ€Induced Suppression of Luteinising Hormone Secretion in the Female Rat. Journal of Neuroendocrinology, 2009, 21, 20-29.	1.2	165
43	Neonatal Lipopolysaccharide Exposure Delays Puberty and Alters Hypothalamic <i>Kiss1</i> and <i>Kiss1r</i> mRNA Expression in the Female Rat. Journal of Neuroendocrinology, 2009, 21, 683-689.	1.2	80
44	Effects of ghrelin on Kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat. Neuroscience Letters, 2009, 460, 143-147.	1.0	125
45	A role for the medial preoptic area in CGRP-induced suppression of pulsatile LH secretion in the female rat. Stress, 2009, 12, 259-267.	0.8	10
46	Effects of Kisspeptin-10 on the Electrophysiological Manifestation of Gonadotropin-Releasing Hormone Pulse Generator Activity in the Female Rat. Endocrinology, 2008, 149, 1004-1008.	1.4	77
47	The role of corticotrophin-releasing hormone receptors in the calcitonin gene-related peptide-induced suppression of pulsatile luteinising hormone secretion in the female rat. Stress, 2008, 11, 312-319.	0.8	19
48	Neonatal Lipopolysaccharide Exposure Exacerbates Stress-Induced Suppression of Luteinizing Hormone Pulse Frequency in Adulthood. Endocrinology, 2007, 148, 5984-5990.	1.4	41
49	Corticotrophin-releasing factor type 2 receptor-mediated suppression of gonadotrophin-releasing hormone mRNA expression in GT1-7 cells. Stress, 2006, 9, 215-222.	0.8	19
50	Differential Role of Corticotrophin-Releasing Factor Receptor Types 1 and 2 in Stress-Induced Suppression of Pulsatile Luteinising Hormone Secretion in the Female Rat. Journal of Neuroendocrinology, 2006, 18, 602-610.	1.2	85
51	Effect of Calcitonin Gene-Related Peptide on Gonadotrophin-Releasing Hormone mRNA Expression in GT1-7 Cells. Journal of Neuroendocrinology, 2005, 17, 541-544.	1.2	8
52	Calcitonin gene-related peptide-induced suppression of luteinizing hormone pulses in the rat: the role of endogenous opioid peptides. Journal of Physiology, 2005, 566, 921-928.	1.3	19
53	Role of Corticotropin-Releasing Factor Receptor-2 in Stress-Induced Suppression of Pulsatile Luteinizing Hormone Secretion in the Rat. Endocrinology, 2005, 146, 318-322.	1.4	79
54	The Role of the Locus Coeruleus in Corticotropin-Releasing Hormone and Stress-Induced Suppression of Pulsatile Luteinizing Hormone Secretion in the Female Rat. Endocrinology, 2005, 146, 323-331.	1.4	53

#	Article	IF	CITATIONS
55	Stress-Induced Suppression of the Gonadotropin-Releasing Hormone Pulse Generator in the Female Rat: A Novel Neural Action for Calcitonin Gene-Related Peptide. Endocrinology, 2004, 145, 1556-1563.	1.4	58
56	The Influence of $17\hat{l}^2$ -oestradiol on Corticotrophin-releasing Hormone Induced Suppression of Luteinising Hormone Pulses and the Role of CRH in Hypoglycaemic Stress-induced Suppression of Pulsatile LH Secretion in the Female Rat. Stress, 2004, 7, 113-118.	0.8	53
57	The Effects of the Phytoestrogen, Coumestrol, on Gonadotropin-Releasing Hormone (GnRH) mRNA Expression in GT1-7 GnRH Neurones. Journal of Neuroendocrinology, 2003, 15, 105-108.	1.2	31
58	The Effect of Oestradiol and Progesterone on Hypoglycaemic Stressâ€Induced Suppression of Pulsatile Luteinizing Hormone Release and on Corticotropinâ€Releasing Hormone mRNA Expression in the Rat. Journal of Neuroendocrinology, 2003, 15, 468-476.	1.2	67
59	Stress-Induced Suppression of Pulsatile Luteinising Hormone Release in the Female Rat: Role of Vasopressin. Journal of Neuroendocrinology, 2001, 11, 677-683.	1.2	27
60	Hypoglycaemiaâ€Induced Inhibition of Pulsatile Luteinizing Hormone Secretion in Female Rats: Role of Oestradiol, EndogenousOpioids and the Adrenal Medulla. Journal of Neuroendocrinology, 1997, 9, 867-872.	1,2	59
61	The insulin hypoglycemia-induced inhibition of gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: roles of vasopressin and corticotropin-releasing factor Endocrinology, 1996, 137, 2012-2021.	1.4	83
62	Ambient light modifies gonadotropin-releasing hormone pulse generator frequency in the rhesus monkey Endocrinology, 1993, 133, 1520-1524.	1.4	15
63	Electrophysiological approaches to gonadotrophin releasing hormone pulse generator activity in the rhesus monkey. Human Reproduction, 1993, 8, 37-40.	0.4	44
64	Hypoglycemic â€~Stress' and Gonadotropin-Releasing Hormone Pulse Generator Activity in the Rhesus Monkey: Role of the Ovary. Neuroendocrinology, 1992, 56, 666-673.	1.2	144
65	Radiotelemetric Monitoring of Hypothalamic Gonadotropin-Releasing Hormone Pulse Generator Activity Throughout the Menstrual Cycle of the Rhesus Monkey [*] . Endocrinology, 1991, 129, 1207-1214.	1.4	120
66	Naloxone reversal of stress-induced suppression of LH release in the common marmoset. Physiology and Behavior, 1989, 45, 1077-1080.	1.0	20
67	Effects of acute stress on the patterns of LH secretion in the common marmoset (Callithrix jacchus). Journal of Endocrinology, 1988, 118, 259-264.	1.2	26
68	Ambient light modifies gonadotropin-releasing hormone pulse generator frequency in the rhesus monkey. , 0, .		2
69	The insulin hypoglycemia-induced inhibition of gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: roles of vasopressin and corticotropin-releasing factor. , 0, .		19
70	Phytoestrogens and Gonadotropin-Releasing Hormone Pulse Generator Activity and Pituitary Luteinizing Hormone Release in the Rat. , 0, .		26