## Felix Vogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3615805/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The H <sub>2</sub> /CO ratio of emissions from combustion sources: comparison of<br>top-down with bottom-up measurements in southwest Germany. Tellus, Series B: Chemical and Physical<br>Meteorology, 2022, 61, 547.                                     | 0.8 | 32        |
| 2  | Implication of weekly and diurnal <sup>14</sup> C calibration on hourly estimates of<br>CO-based fossil fuel CO <sub>2</sub> ata moderately polluted site in southwestern<br>Germany. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 512. | 0.8 | 65        |
| 3  | Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region. Atmospheric Chemistry and Physics, 2022, 22, 2121-2133.                                                                       | 1.9 | 1         |
| 4  | Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon<br>Column Observing Network (COCCON). Atmospheric Measurement Techniques, 2022, 15, 2433-2463.                                                                 | 1.2 | 10        |
| 5  | Tracking Local Radiocarbon Releases From Nuclear Power Plants in Southern Ontario (Canada) Using<br>Annually Dated Tree-ring Records. Anthropocene, 2022, , 100338.                                                                                       | 1.6 | 0         |
| 6  | A multi-city urban atmospheric greenhouse gas measurement data synthesis. Scientific Data, 2022, 9, .                                                                                                                                                     | 2.4 | 5         |
| 7  | The Facility Level and Area Methane Emissions inventory for the Greater Toronto Area (FLAME-GTA).<br>Atmospheric Environment, 2021, 252, 118319.                                                                                                          | 1.9 | 4         |
| 8  | Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy. Atmosphere, 2021, 12, 848.                                                                           | 1.0 | 5         |
| 9  | Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly<br>Twice Those Reported in Inventories. Environmental Science & Technology, 2020, 54, 14899-14909.                                                     | 4.6 | 52        |
| 10 | Intercomparison study of atmospheric <sup>222</sup> Rn and<br><sup>222</sup> Rn progeny monitors. Atmospheric Measurement<br>Techniques, 2020, 13, 2241-2255.                                                                                             | 1.2 | 11        |
| 11 | Investigation of the Spatial Distribution of Methane Sources in the Greater Toronto Area Using<br>Mobile Gas Monitoring Systems. Environmental Science & Technology, 2020, 54, 15671-15679.                                                               | 4.6 | 17        |
| 12 | A global dataset of CO2 emissions and ancillary data related to emissions for 343 cities. Scientific Data, 2019, 6, 180280.                                                                                                                               | 2.4 | 65        |
| 13 | Analysis of atmospheric CH <sub>4</sub> in Canadian Arctic and estimation<br>of the regional CH <sub>4</sub> fluxes. Atmospheric Chemistry and<br>Physics, 2019, 19, 4637-4658.                                                                           | 1.9 | 12        |
| 14 | Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and<br>ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmospheric Measurement<br>Techniques, 2019, 12, 1513-1530.                          | 1.2 | 82        |
| 15 | Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for<br>atmospheric CO <sub>2</sub> monitoring in urban areas. Atmospheric<br>Measurement Techniques, 2019, 12, 2665-2677.                                     | 1.2 | 16        |
| 16 | Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods. Nature Communications, 2019, 10, 1863.                                                                                                | 5.8 | 46        |
| 17 | XCO <sub>2</sub> in an emission hot-spot region: the COCCON Paris campaign 2015. Atmospheric Chemistry and Physics, 2019, 19, 3271-3285.                                                                                                                  | 1.9 | 35        |
| 18 | High-resolution quantification of atmospheric CO <sub>2</sub> mixing<br>ratios in the Greater Toronto Area, Canada. Atmospheric Chemistry and Physics, 2018, 18, 3387-3401.                                                                               | 1.9 | 12        |

Felix Vogel

| #  | Article                                                                                                                                                                                                                                                            | IF                | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 19 | Potential of European<br><sup>14</sup> CO <sub>2</sub> observation<br>network to estimate the fossil fuel CO <sub>2</sub> emissions via<br>atmospheric inversions. Atmospheric Chemistry and Physics, 2018, 18, 4229-4250.                                         | 1.9               | 17        |
| 20 | Study of the daily and seasonal atmospheric CH <sub>4</sub> mixing ratio<br>variability in a rural Spanish region using <sup>222</sup> Rn tracer.<br>Atmospheric Chemistry and Physics, 2018, 18, 5847-5860.                                                       | 1.9               | 24        |
| 21 | Characterization of the δ 13 C signatures of anthropogenic CO 2 emissions in the Greater Toronto<br>Area, Canada. Applied Geochemistry, 2017, 83, 171-180.                                                                                                         | 1.4               | 13        |
| 22 | Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions from fossil fuel combustion. Tellus, Series B: Chemical and Physical Meteorology, 2017, 69, 1325723.                                                                       | 0.8               | 16        |
| 23 | Characterization of interferences to in situ observations of<br><i>l'</i> <sup>13</sup> CH <sub>4&amp;a<br/>and C<sub>2</sub>H<sub>6</sub> when using a<br/>cavity ring-down spectrometer at industrial sites. Atmospheric Measurement Techniques, 2017, 10,</sub> | mp;lt;/sut<br>1.2 | ><br>18   |
| 24 | Demonstration of spatial greenhouse gas mapping using laser absorption spectrometers on local scales. Journal of Applied Remote Sensing, 2017, 11, 014002.                                                                                                         | 0.6               | 15        |
| 25 | Exploiting stagnant conditions to derive robust emission ratio estimates for<br>CO <sub>2</sub> , CO and volatile organic compounds in Paris. Atmospheric<br>Chemistry and Physics, 2016, 16, 15653-15664.                                                         | 1.9               | 18        |
| 26 | What would dense atmospheric observation networks bring to the quantification of city<br>CO <sub>2</sub> emissions?. Atmospheric Chemistry and Physics, 2016, 16,<br>7743-7771.                                                                                    | 1.9               | 45        |
| 27 | Impact of optimized mixing heights on simulated regional atmospheric transport of<br>CO <sub>2</sub> . Atmospheric Chemistry and Physics, 2014, 14, 7149-7172.                                                                                                     | 1.9               | 33        |
| 28 | Evaluation of a cavity ring-down spectrometer for in situ observations of<br><sup>13</sup> CO <sub>2</sub> . Atmospheric<br>Measurement Techniques, 2013, 6, 301-308.                                                                                              | 1.2               | 41        |
| 29 | Implications for Deriving Regional Fossil Fuel CO2 Estimates from Atmospheric Observations in a Hot<br>Spot of Nuclear Power Plant 14CO2 Emissions. Radiocarbon, 2013, 55, .                                                                                       | 0.8               | 7         |