Dahu Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3615663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration. Chemical Engineering Journal, 2018, 334, 273-284.	12.7	322
2	Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway. Chemical Engineering Journal, 2017, 308, 330-339.	12.7	302
3	MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A. Chemical Engineering Journal, 2018, 353, 329-339.	12.7	295
4	From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor. Applied Catalysis B: Environmental, 2019, 254, 312-320.	20.2	249
5	Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant. Applied Catalysis B: Environmental, 2020, 263, 118348.	20.2	246
6	Adsorption of cesium from aqueous solution using agricultural residue – Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Research, 2013, 47, 2563-2571.	11.3	240
7	Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate. Chemical Engineering Journal, 2019, 359, 373-384.	12.7	229
8	Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chemical Engineering Journal, 2018, 354, 856-865.	12.7	212
9	Pyrrolic N-rich biochar without exogenous nitrogen doping as a functional material for bisphenol A removal: Performance and mechanism. Applied Catalysis B: Environmental, 2021, 291, 120093.	20.2	153
10	Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism. Chemical Engineering Journal, 2018, 345, 364-374.	12.7	151
11	Attenuation of BPA degradation by SO4â^' in a system of peroxymonosulfate coupled with Mn/Fe MOF-templated catalysts and its synergism with Clâ^' and bicarbonate. Chemical Engineering Journal, 2019, 372, 605-615.	12.7	146
12	Overlooked role of nitrogen dopant in carbon catalysts for peroxymonosulfate activation: Intrinsic defects or extrinsic defects?. Applied Catalysis B: Environmental, 2021, 295, 120291.	20.2	117
13	Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study. Chemical Engineering Journal, 2018, 351, 1137-1146.	12.7	99
14	Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate. Chemical Engineering Journal, 2020, 392, 123725.	12.7	99
15	Synergistic Adsorption and Oxidation of Ciprofloxacin by Biochar Derived from Metal-Enriched Phytoremediation Plants: Experimental and Computational Insights. ACS Applied Materials & Interfaces, 2020, 12, 53788-53798.	8.0	89
16	Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag3PO4@natural hematite heterojunction photocatalyst under simulated solar light. Journal of Hazardous Materials, 2019, 371, 566-575.	12.4	87
17	In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: Characteristics and performance studies. Separation and Purification Technology, 2020, 241, 116702.	7.9	81
18	Oxygen vacancies-enriched CoFe2O4 for peroxymonosulfate activation: The reactivity between radical-nonradical coupling way and bisphenol A. Journal of Hazardous Materials, 2021, 418, 126357.	12.4	81

Dahu Ding

#	Article	IF	CITATIONS
19	Sulfonic-Group-Grafted Ti ₃ C ₂ T _{<i>x</i>} MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS Nano, 2021, 15, 9065-9075.	14.6	78
20	Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: Competitive versus synergistic. Journal of Hazardous Materials, 2022, 424, 127435.	12.4	74
21	Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles. Chemical Engineering Journal, 2021, 404, 127052.	12.7	67
22	Facile synthesis of α-Fe ₂ O ₃ nanodisk with superior photocatalytic performance and mechanism insight. Science and Technology of Advanced Materials, 2015, 16, 014801.	6.1	63
23	Selective removal of cesium by ammonium molybdophosphate – polyacrylonitrile bead and membrane. Journal of Hazardous Materials, 2017, 324, 753-761.	12.4	57
24	Mesoporous carbon framework supported Cu-Fe oxides as efficient peroxymonosulfate catalyst for sustained water remediation. Chemical Engineering Journal, 2022, 430, 133060.	12.7	42
25	Significance of B-site cobalt on bisphenol A degradation by MOFs-templated CoxFe3â^xO4 catalysts and its severe attenuation by excessive cobalt-rich phase. Chemical Engineering Journal, 2019, 359, 552-563.	12.7	41
26	Nickel Oxide Grafted Andic Soil for Efficient Cesium Removal from Aqueous Solution: Adsorption Behavior and Mechanisms. ACS Applied Materials & amp; Interfaces, 2013, 5, 10151-10158.	8.0	37
27	Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight. ACS Applied Materials & Interfaces, 2016, 8, 142-151.	8.0	37
28	Sulfate radical induced catalytic degradation of metolachlor: Efficiency and mechanism. Chemical Engineering Journal, 2019, 368, 606-617.	12.7	35
29	Modulation of carbon induced persulfate activation by nitrogen dopants: recent advances and perspectives. Journal of Materials Chemistry A, 2021, 9, 25796-25826.	10.3	34
30	Evaluation of N-doped carbon for the peroxymonosulfate activation and removal of organic contaminants from livestock wastewater and groundwater. Journal of Materials Chemistry A, 2022, 10, 9171-9183.	10.3	28
31	Dissolved black carbon induced elimination of bisphenol a by peroxymonosulfate activation through HClO mediated oxidation process. Chemical Engineering Journal, 2022, 446, 137179.	12.7	21
32	Sustainable heterolytic cleavage of peroxymonosulfate by promoting Fe(III)/Fe(II) cycle: The role of in-situ sulfur. Chemical Engineering Journal, 2022, 446, 137257.	12.7	10