List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3615382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional Atomic Image of FeSe High-temperature Superconductor by X-ray Fluorescence Holography. E-Journal of Surface Science and Nanotechnology, 2022, 20, 36-41.	0.1	0
2	Local Structure Analysis on Yttria-Stabilized Zirconia by X-ray Fluorescence Holography. E-Journal of Surface Science and Nanotechnology, 2022, 20, 51-57.	0.1	0
3	High-precision atomic image reconstruction from photoelectron hologram of O on W(110) by SPEA-L1. Journal of Electron Spectroscopy and Related Phenomena, 2022, 256, 147177.	0.8	2
4	Incorporation Site and Valence State of Sn Atoms in Sn-Substituted La(O,F)BiS ₂ Superconductor. Journal of the Physical Society of Japan, 2022, 91, .	0.7	5
5	Atomic structure analysis of gallium oxide at the Al ₂ O ₃ /GaN interface using photoelectron holography. Applied Physics Express, 2022, 15, 085501.	1.1	5
6	Soft X-ray ARPES for three-dimensional crystals in the micrometre region. Journal of Synchrotron Radiation, 2021, 28, 1631-1638.	1.0	10
7	Spherical micro-hole grid for high-resolution retarding field analyzer. Journal of Synchrotron Radiation, 2021, 28, 1669-1671.	1.0	8
8	Anion arrangement analysis of oxynitride perovskite thin film with inverse photoelectron holography. Journal of Electron Spectroscopy and Related Phenomena, 2021, 246, 147018.	0.8	4
9	Persistence of the Topological Surface States in Bi2Se3 against Ag Intercalation at Room Temperature. Journal of Physical Chemistry C, 2021, 125, 1784-1792.	1.5	1
10	Element-selective local structural analysis around B -site cations in multiferroic Pb(Fe1/2Nb1/2)O3 using x-ray fluorescence holography. Physical Review B, 2021, 104, .	1.1	4
11	Development of Atomic-resolution Holography Microscope. Vacuum and Surface Science, 2021, 64, 452-457.	0.0	0
12	Local Structure Analysis around Ti in Lead Zirconate Titanate by Xâ€Ray Fluorescence Holography. Physica Status Solidi (B): Basic Research, 2020, 257, 2000191.	0.7	4
13	Theory for Highâ€Angularâ€Resolution Photoelectron Holograms Considering the Inelastic Mean Free Path and the Formation Mechanism of Quasiâ€Kikuchi Band. Physica Status Solidi (B): Basic Research, 2020, 257, 2000117.	0.7	6
14	Local Structure of the Impurity Site in Nd:LaF ₃ by Xâ€Ray Fluorescence Holography. Physica Status Solidi (B): Basic Research, 2020, 257, 2000310.	0.7	2
15	Data processing for atomic resolution holography. Japanese Journal of Applied Physics, 2020, 59, 020502.	0.8	7
16	Local structure and atomic dynamics in Fe2VAl Heusler-type thermoelectric material: The effect of heavy element doping. Physical Review B, 2020, 101, .	1.1	20
17	X-ray fluorescence holography for soft matter. Japanese Journal of Applied Physics, 2020, 59, 010505.	0.8	8
18	Valence-Selective Local Atomic Structures on an YbInCu ₄ Valence Transition Material by X-Ray Fluorescence Holography. Journal of the Physical Society of Japan, 2020, 89, 034603.	0.7	9

#	Article	IF	CITATIONS
19	X-ray Fluorescence Holography Capable of Valence-Selective Structural Analysis: Application to an YbInCu ₄ Valence Transition Material. Nihon Kessho Gakkaishi, 2020, 62, 80-81.	0.0	0
20	Local Atomic Structure Analysis of the Dopants Using Photoelectron Holography Using L1 Regularization. Nihon Kessho Gakkaishi, 2020, 62, 17-25.	0.0	0
21	Asymmetric Phosphorus Incorporation in Homoepitaxial P-Doped (111) Diamond Revealed by Photoelectron Holography. Nano Letters, 2019, 19, 5915-5919.	4.5	29
22	Local structural analysis of Pb(Fe _{1/2} Nb _{1/2})O ₃ multiferroic material using X-ray fluorescence holography. Japanese Journal of Applied Physics, 2019, 58, 100601.	0.8	17
23	Progress in photoelectron holography at SPring-8. Japanese Journal of Applied Physics, 2019, 58, 110503.	0.8	6
24	Experimental data collection and data access software through internet at SPring-8. AIP Conference Proceedings, 2019, , .	0.3	3
25	Three-dimensional dopant imaging in semiconductor crystals using photoelectron holography with chemical state identification. , 2019, , .		0
26	Chemical and magnetic properties of polycrystalline iron surface revealed by Auger electron holography, spectroscopy, and microscopy. Japanese Journal of Applied Physics, 2019, 58, 110602.	0.8	7
27	Mapping nanometer and micrometerâ€scale structures at graphite surface by photoelectron diffraction. Surface and Interface Analysis, 2019, 51, 74-78.	0.8	3
28	Application of Xâ€ray fluorescence holography to the analysis of the interior and surface of an yttrium oxide thin film. Surface and Interface Analysis, 2019, 51, 70-73.	0.8	3
29	Siteâ€sensitive Xâ€ray photoelectron spectroscopy of Fe ₃ O ₄ by photoelectron diffraction. Surface and Interface Analysis, 2019, 51, 115-119.	0.8	3
30	Local structural analysis of Inâ€doped Bi ₂ Se ₃ topological insulator using Xâ€ray fluorescence holography. Surface and Interface Analysis, 2019, 51, 51-55.	0.8	20
31	Cluster Size Effect of X-Ray Fluorescence Hologram Simulation Using Sr _{0.95} La _{0.05} TiO ₃ . Transactions of the Materials Research Society of Japan, 2019, 44, 75-78.	0.2	2
32	Valence-selective local atomic structures in inorganic materials by X-ray fluorescence holography. Japanese Journal of Applied Physics, 2019, 58, 120601.	0.8	6
33	Photoelectron Holography. , 2018, , 451-455.		0
34	Photoelectron Diffraction. , 2018, , 445-450.		0
35	Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing. Journal of the Physical Society of Japan, 2018, 87, 061004.	0.7	17
36	Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement. Japanese Journal of Applied Physics, 2018, 57, 058006.	0.8	12

#	Article	IF	CITATIONS
37	Local Structure Measurement Around Light Elements by Using Inverse Photoelectron Holography. Physica Status Solidi (B): Basic Research, 2018, 255, 1800141.	0.7	4
38	In-plane positional correlations among dopants in 10H type long period stacking ordered Mg75Zn10Y15 alloy studied by X-ray fluorescence holography. Materialia, 2018, 3, 256-259.	1.3	34
39	Algorithm for Atomic Resolution Holography Using Modified <i>L</i> ₁ â€Regularized Linear Regression and Steepest Descent Method. Physica Status Solidi (B): Basic Research, 2018, 255, 1800091.	0.7	14
40	Analyses of 3D atomic arrangements of impurity atoms doped in silicon by spectro-photoelectron holography technique. , 2018, , .		0
41	Three-dimensional atomic arrangement around active/inactive dopant sites in boron-doped diamond. Applied Physics Express, 2018, 11, 061302.	1.1	7
42	Temperature-dependent local atomic structures in the traditional Fe65Ni35Invar alloy by X-ray fluorescence holography. Surface and Interface Analysis, 2018, 50, 790-794.	0.8	9
43	Direct Imaging of Valenceâ€Sensitive Xâ€Ray Fluorescence Holograms of Fe ₃ O ₄ . Physica Status Solidi (B): Basic Research, 2018, 255, 1800100.	0.7	10
44	Applications of a L ₁ â€Regularized Linear Regression to Xâ€Ray Fluorescence Holography Data of Functional Materials. Physica Status Solidi (B): Basic Research, 2018, 255, 1800089.	0.7	10
45	Principle and Reconstruction Algorithm for Atomic-Resolution Holography. Journal of the Physical Society of Japan, 2018, 87, 061002.	0.7	38
46	Progress of Three-Dimensional Atomic Image Investigations by X-Ray Fluorescence Holography. Vacuum and Surface Science, 2018, 61, 784-789.	0.0	0
47	Multiple-wavelength neutron holography with pulsed neutrons. Science Advances, 2017, 3, e1700294.	4.7	22
48	Individual Atomic Imaging of Multiple Dopant Sites in As-Doped Si Using Spectro-Photoelectron Holography. Nano Letters, 2017, 17, 7533-7538.	4.5	60
49	Correlation Between High Gas Sensitivity and Dopant Structure in W-doped ZnO. Physical Review Applied, 2017, 7, .	1.5	15
50	Impurity position and lattice distortion in a Mn-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Bi </mml:mi> <mml: topological insulator investigated by x-ray fluorescence holography and x-ray absorption fine structure. Physical Review B. 2017. 96</mml: </mml:msub></mml:mrow></mml:math 	nn>2,/mm 1.1	nl:mn>
51	Wide-angle display-type retarding field analyzer with high energy and angular resolutions. Review of Scientific Instruments, 2017, 88, 123106.	0.6	33
52	A valence-selective X-ray fluorescence holography study of an yttrium oxide thin film. Journal of Applied Crystallography, 2017, 50, 1583-1589.	1.9	19
53	SPring-8 BL36XU: Catalytic Reaction Dynamics for Fuel Cells. Journal of Physics: Conference Series, 2016, 712, 012142.	0.3	22
54	Upgrade of beamline BL25SU for soft x-ray imaging and spectroscopy of solid using nano- and micro-focused beams at SPring-8. AIP Conference Proceedings, 2016, , .	0.3	33

#	Article	IF	CITATIONS
55	Fast Calculation Algorithm Using Barton's Method for Reconstructing Three-Dimensional Atomic Images from X-ray Fluorescence Holograms. Zeitschrift Fur Physikalische Chemie, 2016, 230, 449-455.	1.4	3
56	Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface. Scientific Reports, 2016, 6, 36258.	1.6	25
57	Atomic Image Reconstruction from Atomic Resolution Holography Using <i>L</i> ₁ -Regularized Linear Regression. E-Journal of Surface Science and Nanotechnology, 2016, 14, 158-160.	0.1	27
58	Development of Micro-Photoelectron Diffraction at SPring-8 BL25SU. E-Journal of Surface Science and Nanotechnology, 2016, 14, 59-62.	0.1	3
59	Interfacial atomic site characterization by photoelectron diffraction for 4H-AlN/4H-SiC(\$11ar{2}0\$) heterojunction. Japanese Journal of Applied Physics, 2016, 55, 085701.	0.8	3
60	Development of an X-ray fluorescence holographic measurement system for protein crystals. Review of Scientific Instruments, 2016, 87, 063707.	0.6	28
61	Circular Dichroism in Cu Resonant Auger Electron Diffraction. Zeitschrift Fur Physikalische Chemie, 2016, 230, 519-535.	1.4	5
62	Cubic Zirconia Crystalline Surface Oxide Epitaxial Formation on ZrB ₂ (0001) Confirmed by Circularly-Polarized-Light Photoelectron Diffraction. E-Journal of Surface Science and Nanotechnology, 2015, 13, 111-114.	0.1	1
63	Reaction of Sb on In/Si(111) surfaces: Heteroepitaxial InSb(111) formation. Surface Science, 2015, 641, 121-127.	0.8	2
64	Selective Detection of Angular-Momentum-Polarized Auger Electrons by Atomic Stereography. Physical Review Letters, 2015, 114, 015501.	2.9	14
65	Stacking registry determination of graphene grown on the SiC(0001) by photoelectron holography. Surface Science, 2015, 635, 1-4.	0.8	10
66	Local atomic configuration of graphene, buffer layer, and precursor layer on SiC(0001) by photoelectron diffraction. Surface Science, 2015, 632, 98-102.	0.8	7
67	Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation. IUCrJ, 2014, 1, 221-227.	1.0	9
68	Photoelectron structure factor and diffraction spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 347-360.	0.8	28
69	Lattice distortion of porous Si by Li absorption using two-dimensional photoelectron diffraction. Journal of Materials Science, 2014, 49, 35-42.	1.7	0
70	Site-Specific Atomic and Electronic Structure Analysis of Epitaxial Silicon Oxynitride Thin Film on SiC(0001) by Photoelectron and Auger Electron Diffractions. Journal of the Physical Society of Japan, 2014, 83, 044604.	0.7	5
71	Development of display-type ellipsoidal mesh analyzer: Computational evaluation and experimental validation. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 382-398.	0.8	23
72	Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 365-374.	0.8	23

#	Article	IF	CITATIONS
73	Local Clusters in a Distorted Rocksalt GeTe Crystal Found by X-ray Fluorescence Holography. Journal of the Physical Society of Japan, 2014, 83, 124602.	0.7	10
74	Characteristic two-dimensional Fermi surface topology of high-Tc iron-based superconductors. Scientific Reports, 2014, 4, 4381.	1.6	21
75	RISING beamline (BL28XU) for rechargeable battery analysis. Journal of Synchrotron Radiation, 2014, 21, 268-272.	1.0	22
76	New soft X-ray beamline BL07LSU at SPring-8. Journal of Synchrotron Radiation, 2014, 21, 352-365.	1.0	110
77	Atomic Structure and Catalytic Activity of W-Modified Ni ₂ P Surface Alloy by Photoelectron Diffraction and Spectroscopy. E-Journal of Surface Science and Nanotechnology, 2014, 12, 53-56.	0.1	7
78	Characterizing Edge and Stacking Structures of Exfoliated Graphene by Photoelectron Diffraction. Japanese Journal of Applied Physics, 2013, 52, 110110.	0.8	9
79	Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction. Applied Physics Letters, 2013, 102, .	1.5	8
80	Experimental station for multiscale surface structural analyses of soft-material films at SPring-8 via a GISWAX/GIXD/XR-integrated system. Polymer Journal, 2013, 45, 109-116.	1.3	51
81	Observation of Micro-Magnetic Structures by Synchrotron Radiation Photoelectron Emission Microscopy. Journal of the Physical Society of Japan, 2013, 82, 021005.	0.7	12
82	New XAFS beamline for structural and electronic dynamics of nanoparticle catalysts in fuel cells under operating conditions. Journal of Physics: Conference Series, 2013, 430, 012020.	0.3	29
83	A hard X-ray nanospectroscopy station at SPring-8 BL39XU. Journal of Physics: Conference Series, 2013, 430, 012017.	0.3	25
84	Element Assignment for Three-Dimensional Atomic Imaging by Photoelectron Holography. Journal of the Physical Society of Japan, 2013, 82, 114005.	0.7	19
85	X-ray fluorescence holography. Journal of Physics Condensed Matter, 2012, 24, 093201.	0.7	73
86	A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser. Review of Scientific Instruments, 2012, 83, 043108.	0.6	11
87	Three-dimensional spin orientation in antiferromagnetic domain walls of NiO studied by x-ray magnetic linear dichroism photoemission electron microscopy. Physical Review B, 2012, 85, .	1.1	39
88	Direct observation of twin domains of NiO(100) by x-ray linear dichroism at the O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>K</mml:mi>edge using photoemission electron microscopy. Physical Review B, 2012, 85, .</mml:math 	1.1	4
89	Photoelectron Diffraction and Holographic Reconstruction of Graphite. Journal of the Physical Society of Japan, 2012, 81, 114604.	0.7	27
90	Observation and simulation of hard x ray photoelectron diffraction to determine polarity of polycrystalline zinc oxide films with rotation domains. Journal of Applied Physics, 2012, 111, 033525.	1.1	13

Τομομικό Ματsushita

#	Article	IF	CITATIONS
91	A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photonics, 2012, 6, 540-544.	15.6	1,542
92	Status of pump-probe time-resolved photoemission electron microscopy at SPring-8. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 389-394.	0.8	11
93	Negative Photoelectron Diffraction Replica in Secondary Electron Angular Distribution. Journal of the Physical Society of Japan, 2012, 81, 013601.	0.7	12
94	Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polymer Journal, 2011, 43, 471-477.	1.3	112
95	Development of Display-Type Ellipsoidal Mesh Analyzer. E-Journal of Surface Science and Nanotechnology, 2011, 9, 311-314.	0.1	13
96	Reconstruction Algorithm for Atomic Resolution Holography. E-Journal of Surface Science and Nanotechnology, 2011, 9, 153-157.	0.1	12
97	Upgrade status of hard x-ray 100-nm probe beamlines BL37XU and BL39XU at SPring-8. Proceedings of SPIE, 2011, , .	0.8	4
98	Direct observation of spin configuration in an exchange coupled Fe/NiO(100) system by x-ray magnetic circular- and linear- dichroism photoemission electron microscope. Journal of Applied Physics, 2011, 110, 084306.	1.1	7
99	Direct imaging of three-dimensional atomic arrangement by stereophotography using two-dimensional photoelectron spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 648, S139-S141.	0.7	0
100	New soft X-ray beamline BL07LSU for long undulator of SPring-8: Design and status. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 58-60.	0.7	33
101	Development of a soft X-ray angle-resolved photoemission system applicable to 100â€Âµm crystals. Journal of Synchrotron Radiation, 2011, 18, 879-884.	1.0	10
102	Dynamics of Magnetostatically Coupled Vortices Observed by Time-Resolved Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2011, 50, 053001.	0.8	9
103	3D Atomic Imaging by Internal-Detector Electron Holography. Physical Review Letters, 2011, 107, 045502.	2.9	36
104	Site-Specific Stereograph of SiC(0001) Surface by Inverse Matrix Method. Journal of the Physical Society of Japan, 2011, 80, 013601.	0.7	13
105	Optimization of Incident Electron Energy for Internal-Detector Electron Holography with Monte Carlo Simulation. E-Journal of Surface Science and Nanotechnology, 2011, 9, 334-339.	0.1	1
106	Dynamics of Magnetostatically Coupled Vortices Observed by Time-Resolved Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2011, 50, 053001.	0.8	12
107	Complete Assignment of Spin Domains in Antiferromagnetic NiO(100) by Photoemission Electron Microscopy and Cluster Model Calculation. Journal of the Physical Society of Japan, 2010, 79, 013703.	0.7	10
108	Atomic-layer-resolved analysis of surface magnetism by diffraction spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 150-153.	0.8	9

#	Article	IF	CITATIONS
109	Photoelectron holography with improved image reconstruction. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 195-220.	0.8	73
110	Stereo atomscope and diffraction spectroscopy—Atomic site specific property analysis. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 221-240.	0.8	24
111	Hard-X-ray Photoelectron Diffraction from Si(001) Covered by a 0–7-nm-Thick SiO2Layer. Applied Physics Express, 2010, 3, 056701.	1.1	16
112	Dissociation of core-valence doubly excited states in NO followed by atomic Auger decay. Journal of Chemical Physics, 2010, 133, 154315.	1.2	1
113	Doppler effect in fragment autoionization following core-to-Rydberg excitations of N ₂ . New Journal of Physics, 2010, 12, 063030.	1.2	10
114	Electronic structure ofLa1.48Nd0.4Sr0.12CuO4probed by high- and low-energy angle-resolved photoelectron spectroscopy. Physical Review B, 2009, 80, .	1.1	4
115	Stable operation of a self-amplified spontaneous-emission free-electron laser in the extremely ultraviolet region. Physical Review Special Topics: Accelerators and Beams, 2009, 12, .	1.8	56
116	In situ positioning of a few hundred micrometer-sized cleaved surfaces for soft-x-ray angle-resolved photoemission spectroscopy by use of an optical microscope. Review of Scientific Instruments, 2009, 80, 053901.	0.6	7
117	Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy. Journal of Physics: Conference Series, 2009, 190, 012111.	0.3	0
118	Stereophotograph of InP(001) Surface. E-Journal of Surface Science and Nanotechnology, 2009, 7, 181-185.	0.1	8
119	Mapping of chemical bonding states of Ag/Si(111) with synchrotron radiation photo emission electron microscopy. Surface and Interface Analysis, 2008, 40, 1772-1776.	0.8	7
120	Near EF electronic structure of heavily boron-doped superconducting diamond. Journal of Physics and Chemistry of Solids, 2008, 69, 2978-2981.	1.9	9
121	Circular dichroism of forward focusing peaks and diffraction rings in 2 steradian Si 2p photoelectron pattern. Applied Surface Science, 2008, 254, 7549-7552.	3.1	13
122	A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nature Photonics, 2008, 2, 555-559.	15.6	414
123	Element-Specific Magnetic Properties of Di-Erbium Er ₂ @C ₈₂ and Er ₂ C ₂ @C ₈₂ Metallofullerenes:  A Synchrotron Soft X-ray Magnetic Circular Dichroism Study. Journal of Physical Chemistry C, 2008, 112, 6103-6109.	1.5	30
124	Construction and development of a time-resolved x-ray magnetic circular dichroism–photoelectron emission microscopy system using femtosecond laser pulses at BL25SU SPring-8. Review of Scientific Instruments, 2008, 79, 063903.	0.6	23
125	Reconstruction algorithm for atomic-resolution holography using translational symmetry. Physical Review B, 2008, 78, .	1.1	55
126	Mechanisms of Spontaneous Two-Electron Emission from Core-Excited States of Molecular CO. Physical Review Letters, 2008, 101, 183003.	2.9	10

#	Article	IF	CITATIONS
127	Atomic-Layer Resolved Magnetic and Electronic Structure Analysis of Ni Thin Film on a Cu(001) Surface by Diffraction Spectroscopy. Physical Review Letters, 2008, 100, 207201.	2.9	65
128	Orbital Angular Momentum of Iron Valence Band Electron Deduced by Photoelectron Stereography. Journal of the Physical Society of Japan, 2008, 77, 103301.	0.7	6
129	STEREO PHOTOGRAPHY OF ATOMIC ARRANGEMENT AND ATOMIC-ORBITAL ANALYSIS BY TWO-DIMENSIONAL PHOTOELECTRON SPECTROSCOPY. Surface Review and Letters, 2007, 14, 637-643.	0.5	6
130	Performance of a Highly Stabilized and High-resolution Beamline BL17SU for Advanced Soft X-ray Spectroscopy at SPring-8. AIP Conference Proceedings, 2007, , .	0.3	74
131	Status of the Twin Helical Undulator Soft X-ray Beamline at SPring-8: Performance for Circular Dichroism Measurements. AIP Conference Proceedings, 2007, , .	0.3	11
132	RF Properties of Coaxial Feed-through Connectors for Design of a Frontend Pulse-by-Pulse SR Beam Monitor. AIP Conference Proceedings, 2007, , .	0.3	3
133	A Real-Time Imaging System for Stereo Atomic Microscopy at SPring-8's BL25SU. AIP Conference Proceedings, 2007, , .	0.3	4
134	Dopant-site effect in superconducting diamond (111) studied by atomic stereophotography. Applied Physics Letters, 2007, 91, 251914.	1.5	32
135	Characterization of spectroscopic photoemission and low energy electron microscope using multipolarized soft x rays at BL 17SU/SPring-8, Review of Scientific Instruments, 2007, 78, 066107. Electronic structures of Ammlimath Amins:mml="http://www.w3.org/1998/Math/MathML" and the second structures of Ammlimath Amins:mml="http://www.w3.org/1998/Math/Math/MathML" and the second structures of Ammlimath Amins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	0.6	34
136	display="inline"> <mml:mrow><mml:mn>1<mml:mi><mml:mi><mml:mi><mml:mi><mml:mtext>a "</mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mtext><mml:mt< td=""><td>1.1</td><td>2</td></mml:mt<></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:mi></mml:mi></mml:mi></mml:mi></mml:mn></mml:mrow>	1.1	2
137	display="inline"> <mml:mrow><mml:msub><mml:mi mathyariant="normal">Ni<mml:mrow><m Three-dimensional atomic-arrangement reconstruction from an Auger-electron hologram. Physical Review B, 2007, 75, .</m </mml:mrow></mml:mi </mml:msub></mml:mrow>	1.1	60
138	Application of x-ray excited optical luminescence to x-ray standing wave method and atomic resolution holography. Physical Review B, 2007, 76, .	1.1	12
139	Site-Specific Orbital Angular Momentum Analysis of Graphite Valence Electron Using Photoelectron Forward Focusing Peaks. Journal of the Physical Society of Japan, 2007, 76, 013705.	0.7	30
140	Probing the valence band structure of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">Cu <mml:mn>2</mml:mn> </mml:mi </mml:msub> <mml:mi mathvariant="normal">O </mml:mi </mml:mrow> </mml:math> using high-energy angle-resolved	1.1	67
141	photoelectron spectroscopy. Physical Review B, 2007, 76, . Spin reorientation at the interface of Fe/NiO(001). Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 482-485.	0.8	4
142	Circularly polarized X-ray photoelectron diffraction. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 1-9.	0.8	4
143	Depth resolved electronic structure of cuprate superconductor analyzed by two-dimensional X-ray Auger resonance emission spectroscopy. E-Journal of Surface Science and Nanotechnology, 2007, 5, 143-147.	0.1	11
144	Electronic Structures of Heavily Boron-doped Superconducting Diamond Films. Materials Research Society Symposia Proceedings, 2006, 956, 1.	0.1	0

#	Article	IF	CITATIONS
145	Incident angle dependence of MCD at the Dy M5-edge of perpendicular magnetic DyxCo100â^'x films. Journal of Alloys and Compounds, 2006, 408-412, 741-745.	2.8	8
146	Holographic Analysis of Incident Electron Beam Angular Distribution of Characteristic X-rays: Internal Detector Electron Holography. Journal of the Physical Society of Japan, 2006, 75, 053601.	0.7	8
147	å‰é›»åãf›ãfã,°ãf©ãf•ã,£ãf¼ã•立体原å写真法ã«ã,ˆã,‹åŽŸåéå^—ã®è¦³æ,¬. Materia Japan, 2006, 4	45 <i>0</i> 791-79	16.0
148	Photoelectron angular distribution of 2H-NbSe2 studied by a display-type spherical mirror analyzer and circularly polarized light. Surface and Interface Analysis, 2006, 38, 1604-1606.	0.8	0
149	Sb on In/Si(111) processes with dynamically observable LEEM, selected area LEED and chemically analyzed SR-XPEEM. Surface and Interface Analysis, 2006, 38, 1773-1776.	0.8	4
150	ATOMIC STRUCTURE ANALYSIS OF ULTRA THIN IRON SILICIDE FILMS BY STEREO ATOMSCOPE. Surface Review and Letters, 2006, 13, 209-214.	0.5	5
151	Atomic stereophotograph of intercalation compound Fe1â^•3NbS2. Journal of Applied Physics, 2006, 99, 024907.	1.1	6
152	Direct Observation of the Fe Substitution Effect on the MCD Spectra of the Dysprosium Iron Garnet Family. Physica Scripta, 2005, , 611.	1.2	0
153	Soft X-ray magnetic circular dichroism study of Al40Mn25Fe15Ge20 decagonal quasicrystal. Nuclear Instruments & Methods in Physics Research B, 2005, 238, 251-254.	0.6	2
154	Three-dimensional atomic-image reconstruction from a single-energy Si(001) photoelectron hologram. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 1175-1177.	0.8	1
155	Atomic stereo-photographs of Cu single crystal taken by stereo atomscope. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 1067-1070.	0.8	3
156	Circular dichroism measurement of soft X-ray absorption using helicity modulation of helical undulator radiation. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 1101-1103.	0.8	30
157	Development of a soft X-ray magnetic circular dichroism spectrometer using a 1.9T electromagnet at BL25SU of SPring-8. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 1035-1038.	0.8	62
158	Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature, 2005, 438, 647-650.	13.7	244
159	Scheme for precise correction of orbit variation caused by dipole error field of insertion device. Review of Scientific Instruments, 2005, 76, 055105.	0.6	6
160	Introduction of photoemission electron microscopes at SPring-8 for nanotechnology support. Journal of Physics Condensed Matter, 2005, 17, S1363-S1370.	0.7	15
161	High-resolution soft x-ray photoelectron study of density of states and thermoelectric properties of the Heusler-type alloys(Fe2â^•3V1â^•3)100â^'yAly. Physical Review B, 2005, 71, .	1.1	33
162	Electron holography: A maximum entropy reconstruction scheme. Europhysics Letters, 2005, 71, 597-603.	0.7	37

#	Article	IF	CITATIONS
163	Electron holography: A maximum entropy reconstruction scheme. Europhysics Letters, 2005, 71, 877-878.	0.7	2
164	Synchrotron X-ray Diffraction Studies of the Incommensurate Phase of a Spin–Peierls System CuGeO3in Strong Magnetic Fields. Journal of the Physical Society of Japan, 2004, 73, 2650-2653.	0.7	3
165	Measurement of the orbit fluctuation caused by an insertion device with the amplitude modulation method. AIP Conference Proceedings, 2004, , .	0.3	1
166	Soft x-ray magnetic circular dichroism study of [Co/Pd] multilayered perpendicular magnetic films. Journal of Applied Physics, 2004, 95, 7825-7831.	1.1	7
167	Visualization of graphite atomic arrangement by stereo atomscope. Applied Physics Letters, 2004, 85, 3737-3739.	1.5	36
168	Analysis of the orbit distortion by the use of the wavelet transform. AIP Conference Proceedings, 2004, , .	0.3	0
169	Construction and Commissioning of A 248 m-long Beamline with X-ray Undulator Light Source. AIP Conference Proceedings, 2004, , .	0.3	64
170	Construction and Commissioning of BL37XU at SPring-8. AIP Conference Proceedings, 2004, , .	0.3	45
171	A Measurement System For Circular Dichroism In Soft X-ray Absorption Using Helicity Switching By Twin Helical Undulators. AIP Conference Proceedings, 2004, , .	0.3	7
172	Atomic structure of Fe thin-films on Cu(0 0 1) studied with stereoscopic photography. Applied Surface Science, 2004, 237, 311-315.	3.1	6
173	Stereoscopic photographs of atomic arrangements in MoS2 single-crystal. Applied Surface Science, 2004, 237, 612-616.	3.1	7
174	A new approach for three-dimensional atomic-image reconstruction from a single-energy photoelectron hologram. Europhysics Letters, 2004, 65, 207-213.	0.7	38
175	MCD Measurement at the Tb M4, 5-edges of Tb17 Feï‡ Co (83-ï‡) Perpendicular Magnetization Films. Transactions of the Magnetics Society of Japan, 2004, 4, 326-329.	0.5	6
176	Application of atomic stereomicroscope to surface science. Progress in Surface Science, 2003, 71, 217-239.	3.8	9
177	Beamline for Surface and Interface Structures at SPring-8. Surface Review and Letters, 2003, 10, 543-547.	0.5	140
178	High-resolution resonance photoemission study ofCeMX(M=Pt,Pd;X=P,As,Sb). Physical Review B, 2002, 65, .	1.1	28
179	ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY AND MAGNETIC CIRCULAR DICHROISM IN Fe-INTERCALATED TiS2. Surface Review and Letters, 2002, 09, 961-966.	0.5	16
180	ANGLE-RESOLVED SOFT X-RAY PHOTOEMISSION FOR THE VALENCE BAND OF GRAPHITE. Surface Review and Letters, 2002, 09, 1321-1326.	0.5	8

#	Article	IF	CITATIONS
181	Observation of field-induced magnetic and structural transitions in an antiferromagnet by means of synchrotron x-rays. Journal of Physics Condensed Matter, 2002, 14, L619-L623.	0.7	5
182	HIGH ENERGY RESOLUTION MAGNETIC CIRCULAR DICHROISM MEASUREMENT OF THE FERRITE FAMILY. Surface Review and Letters, 2002, 09, 843-848.	0.5	3
183	Itinerant bulk 4f character of strongly valence-fluctuating CeRu2 observed by high-resolution Ce 3d–4f resonance photoemission. Solid State Communications, 2002, 121, 561-564.	0.9	22
184	Stereo-microscopy of atomic arrangements on thin films using circular dichroism in x-ray photoelectron angular distribution. Transactions of the Magnetics Society of Japan, 2002, 2, 228-233.	0.5	3
185	Effective magnetic quantum number and effective emitter–scatterer distance obtained from W 4f photoelectron diffraction induced by circularly polarized light on W(110). Surface Science, 2001, 493, 15-22.	0.8	6
186	First operation of circular dichroism measurements with periodic photon-helicity switching by a variably polarizing undulator at BL23SU at SPring-8. Review of Scientific Instruments, 2001, 72, 3191-3197.	0.6	19
187	<title>1-km beamline at SPring-8</title> ., 2001, , .		36
188	Infrared beamline BL43IR at SPring-8:. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 441-444.	0.7	24
189	Soft X-ray beamline for spectroscopy of solids at SPring-8. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 553-556.	0.7	20
190	Early commissioning of the SPring-8 beamline for high resolution inelastic X-ray scattering. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 627-630.	0.7	41
191	Design of a beamline for the SPring-8 long undulator source 1. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 678-681.	0.7	93
192	Construction and commissioning of a 215-m-long beamline at SPring-8. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 682-685.	0.7	113
193	Beamline interlock system and rfBPM interlock system in SPring-8. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 816-819.	0.7	4
194	SPring-8 beamline control system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 820-824.	0.7	3
195	Secure network for beamline control. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 825-828.	0.7	2
196	Construction of two-dimensional photoelectron spectrometer at SPring-8. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1493-1496.	0.7	52
197	First results from the actinide science beamline BL23SU at SPring-8. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 474, 253-258.	0.7	77
198	Magnetic circular dichroism at transition metalL2,3edges inD03-type (Fe1-xMnx)3Al alloys. Journal of Synchrotron Radiation, 2001, 8, 455-456.	1.0	4

#	Article	IF	CITATIONS
199	Magnetic circular dichroism at transition metalL2,3edges inD03-type (Fe1-xVx)3Al alloys. Journal of Synchrotron Radiation, 2001, 8, 457-459.	1.0	4
200	Soft X-ray absorption spectra of ilmenite family. Journal of Synchrotron Radiation, 2001, 8, 907-909.	1.0	9
201	Fast ignitor research at the Institute of Laser Engineering, Osaka University. Physics of Plasmas, 2001, 8, 2268-2274.	0.7	72
202	Resonance photoemission study of CePtP. Physica B: Condensed Matter, 2000, 281-282, 105-107.	1.3	2
203	High-resolution resonant photoemission study of CeRu2. Physica B: Condensed Matter, 2000, 281-282, 729-730.	1.3	5
204	Local magnetic states in La1â^'xSrxMnO3 and Nd1â^'xSrxMnO3. Physica B: Condensed Matter, 2000, 281-282, 498-499.	1.3	10
205	An X-ray scattering beamline for studying dynamics. Journal of Physics and Chemistry of Solids, 2000, 61, 461-465.	1.9	237
206	TWO-DIMENSIONAL CIRCULARLY-POLARIZED-LIGHT PHOTOELECTRON DIFFRACTION FOR THE ANALYSIS OF MAGNETIC AND ELECTRONIC PROPERTIES ON SURFACES. Surface Review and Letters, 2000, 07, 643-647.	0.5	9
207	Bulk and surface electronic structures ofCePdX(X=As,Sb)studied by3dâ^'4fresonance photoemission. Physical Review B, 2000, 61, 4621-4628.	1.1	26
208	Long-Scale Jet Formation with Specularly Reflected Light in Ultraintense Laser-Plasma Interactions. Physical Review Letters, 2000, 84, 674-677.	2.9	78
209	Performance of a very high resolution soft x-ray beamline BL25SU with a twin-helical undulator at SPring-8. Review of Scientific Instruments, 2000, 71, 3254-3259.	0.6	190
210	Electronic states of charge-orderingNd0.5Sr0.5MnO3probed by photoemission. Physical Review B, 1999, 59, 15528-15532.	1.1	38
211	2presonance photoemission and Auger features inNiS2andFeS2. Physical Review B, 1999, 60, 5049-5054.	1.1	13
212	Angle-resolved photoemission study of Ni-intercalated1Tâ^'TiS2. Physical Review B, 1999, 60, 1678-1686.	1.1	17
213	High resolution Ce 3 d –4 f resonant photoemission study of CeNiSn and CePdSn. Solid State Communications, 1999, 111, 373-378.	0.9	12
214	Photoemission study of polypyrrole and polyaniline. Synthetic Metals, 1999, 101, 479-480.	2.1	1
215	Twin helical undulator beamline for soft X-ray spectroscopy at SPring-8. Journal of Synchrotron Radiation, 1998, 5, 542-544.	1.0	50

High resolution resonance photoemission, XPS and inverse photoemission spectroscopy of CePdX (X =) Tj ETQq0 $\begin{array}{c} 0.0 \\ 0.8 \end{array}$ gBT /Oyerlock 10

#	Article	IF	CITATIONS
217	Electronic structure of pyrite-typeMnTe2studied by photoelectron spectroscopy. Physical Review B, 1998, 58, 13491-13497.	1.1	15
218	Temperature-Dependent Change of Correlated Electronic States in Yb4As3and Yb4(As1-xSbx)3Probed by High Resolution Photoemission Spectroscopy. Journal of the Physical Society of Japan, 1998, 67, 3552-3560.	0.7	11
219	Linear and circular dichroism in photoemission angular distribution from the valence band of1Tâ^'TaS2. Physical Review B, 1997, 56, 7687-7693.	1.1	22
220	Evolution of electronic states in the Kondo alloy systemYb1â^'xLuxB12. Physical Review B, 1997, 56, 13727-13730.	1.1	15
221	Susakiet al.Reply:. Physical Review Letters, 1997, 78, 1832-1832.	2.9	5
222	Study of laser-imploded core plasmas with an advanced Kirkpatrick–Baez x-ray microscope. Review of Scientific Instruments, 1997, 68, 824-827.	0.6	17
223	High-resolution photoemission study of metallic, insulating, and superconducting BEDT-TTF salts. Physical Review B, 1997, 56, 9082-9090.	1.1	26
224	High resolution photoemission study of Nd0.5Sr0.5MnO3: Temperature dependence and resonance spectra. Physica B: Condensed Matter, 1997, 237-238, 413-414.	1.3	6
225	High resolution photoemission study of CeRu2Si2. Solid State Communications, 1997, 103, 659-662.	0.9	15
226	Low-Energy Electronic Structure of the Kondo InsulatorYbB12. Physical Review Letters, 1996, 77, 4269-4272.	2.9	58
227	Measurement of absorption distribution by second harmonic and x-ray images. AIP Conference Proceedings, 1996, , .	0.3	1
228	Unusual two-dimensional angular distribution of photoelectrons of kish graphite and 1T-TaS2. Solid State Communications, 1996, 98, 671-675.	0.9	4
229	Two-dimensional angular distribution of photoemission spectra from the valence band of 1T-TaS2. Journal of Electron Spectroscopy and Related Phenomena, 1996, 78, 489-492.	0.8	5
230	Two-dimensional angular distribution of photoelectrons of single-crystal graphite. Journal of Physics Condensed Matter, 1996, 8, 2715-2732.	0.7	36
231	Spin-resolved 3pand 3score-level photoemission spectra of ferromagnetic nickel. Physical Review B, 1995, 52, R11549-R11552.	1.1	16
232	Unoccupied electronic states and exchange splitting of M2As (M = Cr, Fe, Mn) and MnAlGe. Solid State Communications, 1993, 85, 901-905.	0.9	10
233	High-Resolution Isochromat Inverse Photoemission Spectroscopy. Japanese Journal of Applied Physics, 1993, 32, L1841-L1844.	0.8	4
234	Photoemission and Absorption Spectroscopy of Mn2Sb, MnAlGe, Mn2As, Cr2As and Fe2As. Journal of the Physical Society of Japan, 1993, 62, 1624-1633.	0.7	16

#	Article	IF	CITATIONS
235	Resonance Photoemission Spectroscopy of Mn2As, Cr2As and Fe2As. Japanese Journal of Applied Physics, 1992, 31, L1767-L1770.	0.8	9
236	Electronic structures of Mn2Sb and MnAlGe: Photoemission and inverse photoemission spectroscopy. Solid State Communications, 1992, 81, 707-710.	0.9	19
237	Imaging of laser-imploded targets with X-ray CCD cameras. , 0, , .		0