
Biaolin Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3615197/publications.pdf Version: 2024-02-01

ΒΙΛΟΓΙΝ ΥΙΝ

#	Article	IF	CITATIONS
1	Synthesis and fluorescent properties of quinoxaline derived ionic liquids. Green Energy and Environment, 2022, 7, 996-1005.	8.7	8
2	Progress in Organocatalytic Dearomatization Reactions Catalyzed by <i>N</i> â€Heterocyclic Carbenes. ChemCatChem, 2022, 14, .	3.7	10
3	LiCl-Mediated and Palladium-Catalyzed Oxidative Cyclization of Furan–Ynes via Dearomatizing Alkoxyalkenylation of Furan. Organic Letters, 2022, 24, 3275-3280.	4.6	3
4	Visible‣ightâ€Induced [2+2+1] Dearomative Cascade Cyclization of Indole/Furan Alkynes to Synthesize Sulfonyl Polycycles. Advanced Synthesis and Catalysis, 2022, 364, 2197-2204.	4.3	5
5	CuCl ₂ -catalyzed highly stereoselective and chemoselective reduction of alkynyl amides into α,β-unsaturated amides using silanes as hydrogen donors. Organic and Biomolecular Chemistry, 2021, 19, 365-369.	2.8	5
6	Access to Polycyclic Indol(en)ines <i>via</i> <scp>Baseâ€Catalyzed</scp> Intramolecular Dearomatizing <scp>3â€Alkenylation</scp> of Alkynyl Indoles. Chinese Journal of Chemistry, 2021, 39, 2207-2212.	4.9	11
7	Synthesis of Highly Conjugated Functionalized 2-Pyridones by Palladium-Catalyzed Aerobic Oxidative Dicarbonation Reactions of <i>N</i> -(Furan-2-ylmethyl) Alkyne Amides and Alkenes as Coupling Partners. Journal of Organic Chemistry, 2021, 86, 2748-2759.	3.2	5
8	Access to Polycyclic Thienoindolines via Formal [2+2+1] Cyclization of Alkynyl Indoles with S ₈ and K ₂ S. Organic Letters, 2021, 23, 8033-8038.	4.6	5
9	Iron-Catalyzed Oxidative Decarbonylative α-Alkylation of Acyl-Substituted Furans with Aliphatic Aldehydes as the Alkylating Agents. Journal of Organic Chemistry, 2020, 85, 9396-9404.	3.2	10
10	Access to <i>N</i> -unprotected 2-amide-substituted indoles from Ugi adducts <i>via</i> palladium-catalyzed intramolecular cyclization of <i>o</i> -iodoanilines bearing furan rings. RSC Advances, 2020, 10, 11750-11754.	3.6	5
11	Direct Alkoxycarbonylation of Heteroarenes via Cu-Mediated Trichloromethylation and In Situ Alcoholysis. Organic Letters, 2020, 22, 2093-2098.	4.6	22
12	Transition-metal-free polycyclic indoline formation via a free radical pathway: a computational mechanistic study. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	3
13	Recent Developments in Transition Metalâ€Catalyzed Dearomative Cyclizations of Indoles as Dipolarophiles for the Construction of Indolines. Advanced Synthesis and Catalysis, 2019, 361, 405-425.	4.3	145
14	CuH-Catalyzed Synthesis of 3-Hydroxyindolines and 2-Aryl-3H-indol-3-ones from o-Alkynylnitroarenes, Using Nitro as Both the Nitrogen and Oxygen Source. Organic Letters, 2019, 21, 6194-6198.	4.6	13
15	Palladiumâ€Catalyzed Crossâ€Coupling of Furfuryl Alcohols with Arylboronic Acids via Aromatizationâ€Đriven Carbonâ^Carbon Bond Cleavage to Synthesize 5â€Arylfurfuryl Alcohols and 2,5â€Diaryl Furans. Advanced Synthesis and Catalysis, 2019, 361, 5576-5586.	4.3	8
16	Synthesis of a multifunctional bisphosphate and its flame retardant application in epoxy resin. Polymer Degradation and Stability, 2019, 165, 92-100.	5.8	30
17	Access to Polycyclic Sulfonyl Indolines via Fe(II)-Catalyzed or UV-Driven Formal [2 + 2 + 1] Cyclization Reactions of N-((1H-indol-3-yl)methyl)propiolamides with NaHSO ₃ . Organic Letters, 2019, 21, 2602-2605.	4.6	27
18	Methyl-triflate-mediated dearylmethylation of N-(arylmethyl)carboxamides via the retro-Mannich reaction induced by electrophilic dearomatization/rearomatization in an aqueous medium at room temperature. Green Chemistry, 2019, 21, 2252-2256.	9.0	4

BIAOLIN YIN

#	Article	lF	CITATIONS
19	Access to Densely Functionalized Chalcone Derivatives with a 2-Pyridone Subunit via Pd/Cu-Catalyzed Oxidative Furan–Yne Cyclization of <i>N</i> -(2-Furanylmethyl) Alkynamides under Air. Organic Letters, 2018, 20, 2273-2277.	4.6	22
20	Three-Component Ring-Opening Reactions of Cyclic Ethers, α-Diazo Esters, and Weak Nucleophiles under Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 14385-14395.	3.2	13
21	Tandem Achmatowicz Rearrangement and Acetalization of 1-[5-(Hydroxyalkyl)-furan-2-yl]-cyclobutanols Leading to Dispiroacetals and Subsequent Ring-Expansion to Form 6,7-Dihydrobenzofuran-4(5 <i>H</i>)-ones. Journal of Organic Chemistry, 2018, 83, 12869-12879.	3.2	5
22	BINOL-phosphoric acids-catalyzed furylogous pinacol rearrangement of 1-[5-(hydroxy-diaryl-methyl)-furan-2-yl]-cyclobutanols into spiro cyclopentanones. Tetrahedron, 2018, 74, 6939-6945.	1.9	9
23	Synthesis of <i>N</i> , <i>O</i> -Spiroacetals and α-Arylfurans via Pd-Catalyzed Aerobic Oxidative 2,5-Aminoarylation and α-Arylation of <i>N</i> -[3-(2-Furanyl)propyl]- <i>p</i> -toluenesulfonamides with Boronic Acids. Journal of Organic Chemistry, 2018, 83, 10080-10088.	3.2	14
24	Synthesis of Polyfunctionalized Pyrroles from Furfurylamines and Ynones via CuCl2-Catalyzed and Iodine-Mediated Oxidative Annulation of N-Furfuryl-12-Enaminones. Synthesis, 2017, 49, 2241-2249.	2.3	4
25	Pd-catalyzed regioselective intramolecular direct arylation of 3-indolecarboxamides: access to spiro-indoline-3,3â€2-oxindoles and 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones. Chemical Communications, 2017, 53, 7796-7799.	4.1	30
26	Palladium atalyzed Dearomatizing Alkoxydiarylation of Furan Rings by Coupling with Arylboronic Acids: Access to Polysubstituted Oxabicyclic Compounds. Advanced Synthesis and Catalysis, 2017, 359, 2001-2007.	4.3	11
27	Aerobic oxidative α-arylation of furans with boronic acids via Pd(<scp>ii</scp>)-catalyzed C–C bond cleavage of primary furfuryl alcohols: sustainable access to arylfurans. Chemical Communications, 2017, 53, 12217-12220.	4.1	26
28	Diastereospecific and Enantioselective Access to Dispirooxindoles from Furfurylcyclobutanols by Means of a Pd-Catalyzed Arylative Dearomatization/Ring Expansion Cascade. Organic Letters, 2016, 18, 6440-6443.	4.6	53
29	Synthesis of Spiro-lactams and Polysubstituted Pyrroles via Ceric Ammonium Nitrate-Mediated Oxidative Cyclization of N-Furan-2-ylmethyl-β-Enaminones. Journal of Organic Chemistry, 2016, 81, 4939-4946.	3.2	26
30	Selective Pd-catalyzed α- and β-arylations of the furan rings of (ortho-bromophenyl)furan-2-yl-methanones: C(CO)–C bond cleavage with a furan ring as a leaving group and synthesis of furan-derived fluorenones. Organic Chemistry Frontiers, 2016, 3, 1105-1110.	4.5	10
31	Regioselective and Stereoselective Pd-Catalyzed Intramolecular Arylation of Furans: Access to Spirooxindoles and 5 <i>H</i> -Furo[2,3- <i>c</i>]quinolin-4-ones. Journal of Organic Chemistry, 2016, 81, 9695-9706.	3.2	32
32	Palladium-catalyzed dearomatizing 2,5-alkoxyarylation of furan rings: diastereospecific access to spirooxindoles. Chemical Communications, 2016, 52, 9550-9553.	4.1	45
33	2,5-Oxyarylation of Furans: Synthesis of Spiroacetals via Palladium-Catalyzed Aerobic Oxidative Coupling of Boronic Acids with α-Hydroxyalkylfurans. Organic Letters, 2016, 18, 3226-3229.	4.6	31
34	Copper Chloride atalyzed Aerobic Oxidative Annulation of <i>N</i> â€Furfurylâ€Î²â€Enaminones:Access to Polysubstituted Pyrroles and Indoles. Advanced Synthesis and Catalysis, 2015, 357, 727-731.	4.3	26
35	Base-Mediated Decomposition of Amide-Substituted Furfuryl Tosylhydrazones: Synthesis and Cytotoxic Activities of Enynyl-Ketoamides. Journal of Organic Chemistry, 2015, 80, 2092-2102.	3.2	25
36	Access to polysubstituted indoles or benzothiophenes via palladium-catalyzed cross-coupling of furfural tosylhydrazones with 2-iodoanilines or 2-iodothiophenols. Chemical Communications, 2015, 51, 6126-6129.	4.1	31

BIAOLIN YIN

#	Article	IF	CITATIONS
37	Synthesis, Skeletal Rearrangement, and Biological Activities of Spirooxindoles: Exploration of a Stepwise <i>C</i> â€Piancatelli Rearrangement. European Journal of Organic Chemistry, 2014, 2014, 338-349.	2.4	33
38	Roomâ€Temperature Suzukiâ€Miyaura Reaction Catalyzed by Palladium Nanoparticles in Lactateâ€Anion Ionic Liquid. Chinese Journal of Chemistry, 2014, 32, 1225-1232.	4.9	14
39	Practical access to spiroacetal enol ethers via nucleophilic dearomatization of 2-furylmethylenepalladium halides generated by Pd-catalyzed coupling of furfural tosylhydrazones with aryl halides. Chemical Communications, 2014, 50, 8113.	4.1	38
40	Selective hydrogenation of nitriles to imines over a multifunctional heterogeneous Pt catalyst. AICHE Journal, 2014, 60, 3565-3576.	3.6	29
41	Access to fused pyrroles via the reaction of spiro-dienyl ethers withÂamines involving a chemoselective skeletal rearrangement. Tetrahedron, 2014, 70, 5242-5248.	1.9	6
42	An entry to polysubstituted furans via the oxidative ring opening of furan ring employing NBS as an oxidant. Tetrahedron Letters, 2013, 54, 1256-1260.	1.4	11
43	Metalâ€Free Rearrangement of Spirofurooxindoles into Spiropentenoneoxindoles and Indoles: Implications for the Mechanism and Stereochemistry of the Piancatelli Rearrangement. Advanced Synthesis and Catalysis, 2013, 355, 370-376.	4.3	15
44	Copper-Catalyzed Ring Opening of Furans as a Concise Route to Polysubstituted Furans under Mild Conditions. Synthesis, 2012, 44, 3735-3742.	2.3	13
45	Cu(II)-Promoted Transformations of α-Thienylcarbinols into Spirothienooxindoles: Regioselective Halogenation of Dienyl Sulfethers Containing Electron-Rich Aryl Rings. Journal of Organic Chemistry, 2012, 77, 6365-6370.	3.2	30
46	A Novel Entry to Functionalized Benzofurans and Indoles <i>via</i> Palladium(0)-Catalyzed Arylative Dearomatization of Furans. Organic Letters, 2012, 14, 1098-1101.	4.6	63
47	Facile Synthesis of 3a,6a-Dihydro-furo[2,3-b]furans and Polysubstituted Furans Involving Dearomatization of Furan Ring via Electrocyclic Ring-Closure. Organic Letters, 2012, 14, 616-619.	4.6	51
48	Molecular Diversity of Tonghaosu Analogues, Selective Oxidation of the <i> exoâ€</i> Cyclic Double Bond of Spiroacetal Enol Ethers and Diasteroselective Synthesis of Spiroâ€Pyranone. Chinese Journal of Chemistry, 2010, 28, 2335-2338.	4.9	3
49	Facile Synthesis of Trisubstituted Allenynes by Phosphaneâ€Mediated Deoxygenation of 2,4â€Pentadiynâ€1â€ol. European Journal of Organic Chemistry, 2010, 2010, 4450-4453.	2.4	9
50	An Unusual <i>N</i> â€Boc Deprotection of Benzamides under Basic Conditions. Chinese Journal of Chemistry, 2009, 27, 1645-1648.	4.9	2