Xining Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3615051/publications.pdf

Version: 2024-02-01

99	3,259	35	51
papers	citations	h-index	g-index
102	102	102	2380
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A new solution of high-efficiency rainwater irrigation mode for water management in apple plantation: Design and application. Agricultural Water Management, 2022, 259, 107243.	5.6	10
2	Quantifying the importance of deep root water uptake for apple trees' hydrological and physiological performance in drylands. Journal of Hydrology, 2022, 606, 127471.	5.4	20
3	The efficiency of organic C sequestration in deep soils is enhanced by drier climates. Geoderma, 2022, 415, 115774.	5.1	6
4	Redesign of dryland apple orchards by intercropping the bioenergy crop canola (<i>Brassica napus</i>) Tj ETQq(0 0 0 rgBT 5.6	/Oyerlock 10
5	Impacts of Interspecific Interactions on Crop Growth and Yield in Wheat (Triticum aestivum L.)/Maize (Zea mays L.) Strip Intercropping under Different Water and Nitrogen Levels. Agronomy, 2022, 12, 951.	3.0	4
6	Ecohydrological advantage of young apple tree-based agroforestry and its response to extreme droughts on the semiarid Loess Plateau. Agricultural and Forest Meteorology, 2022, 321, 108969.	4.8	9
7	Ridge cropping and furrow irrigation pattern improved spring maize (<i>Zea mays</i> L.) yield and water productivity in Hetao irrigation area of northâ€western China. Journal of the Science of Food and Agriculture, 2022, 102, 6889-6898.	3.5	2
8	Vertical variation in shallow and deep soil moisture in an apple orchard in the loess hilly–gully area of north China. Soil Use and Management, 2021, 37, 595-606.	4.9	4
9	Impact of land management practices on water use strategy for a dryland tree plantation and subsequent responses to drought. Land Degradation and Development, 2021, 32, 439-452.	3.9	12
10	Measurements and modeling of hydrological responses to summer pruning in dryland apple orchards. Journal of Hydrology, 2021, 594, 125651.	5.4	12
11	Mulching Measures Improve Soil Moisture in Rain-Fed Jujube (Ziziphus jujuba Mill.) Orchards in the Loess Hilly Region of China. Sustainability, 2021, 13, 610.	3.2	8
12	The economic–environmental trade-off of growing apple trees in the drylands of China: A conceptual framework for sustainable intensification. Journal of Cleaner Production, 2021, 296, 126497.	9.3	28
13	Subsurface irrigation with ceramic emitters: An effective method to improve apple yield and irrigation water use efficiency in the semiarid Loess Plateau. Agriculture, Ecosystems and Environment, 2021, 313, 107404.	5.3	26
14	Comparison of the root–soil water relationship of two typical revegetation species along a precipitation gradient on the Loess Plateau. Environmental Research Letters, 2021, 16, 064054.	5.2	5
15	Impacts of land use conversion on the response of soil respiration to precipitation in drylands: A case study with four-yearlong observations. Agricultural and Forest Meteorology, 2021, 304-305, 108426.	4.8	5
16	Evaluating the longâ€ŧerm ecohydrological suitability of restoration efforts in a typical watershed of the Loess Plateau. Hydrological Processes, 2021, 35, e14362.	2.6	3
17	Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau. Agricultural Water Management, 2021, 255, 107010.	5.6	11
18	Dynamics of interspecific water relationship in vertical and horizontal dimensions under a dryland apple-Brassica intercropping system: Quantifying by experiments and the 3D Hi-sAFe model. Agricultural and Forest Meteorology, 2021, 310, 108620.	4.8	5

#	Article	IF	CITATIONS
19	Spatial and Temporal Characteristics of Precipitation and Potential Influencing Factors in the Loess Plateau before and after the Implementation of the Grain for Green Project. Water (Switzerland), 2021, 13, 234.	2.7	4
20	Water Deficit Modulates the CO2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. Frontiers in Plant Science, 2021, 12, 775477.	3.6	6
21	Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum) Tj ETQq1 1 0.	784314 rg 5.1	BT/Overlock
22	Target areas for harmonizing the Grain for Green Programme in China's Loess Plateau. Land Degradation and Development, 2020, 31, 325-333.	3.9	37
23	Age- and climate- related water use patterns of apple trees on China's Loess Plateau. Journal of Hydrology, 2020, 582, 124462.	5.4	41
24	New problems of food security in Northwest China: A sustainability perspective. Land Degradation and Development, 2020, 31, 975-989.	3.9	28
25	Effect of the fodder species canola (Brassica napus L.) and daylily (Hemerocallis fulva L.) on soil physical properties and soil water content in a rainfed orchard on the semiarid Loess Plateau, China. Plant and Soil, 2020, 453, 209-228.	3.7	19
26	The spatial and temporal evolution of the actual evapotranspiration based on the remote sensing method in the Loess Plateau. Science of the Total Environment, 2020, 708, 135111.	8.0	33
27	Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards. Agricultural Water Management, 2020, 242, 106400.	5.6	19
28	Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Research, 2020, 256, 107924.	5.1	21
29	Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system. Agricultural and Forest Meteorology, 2020, 290, 108034.	4.8	34
30	Seasonal effects of intercropping on tree water use strategies in semiarid plantations: Evidence from natural and labelling stable isotopes. Plant and Soil, 2020, 453, 229-243.	3.7	18
31	Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila) Tj ETQq1 1 137739.	0.784314 8.0	rgBT /Overlo
32	Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the tibetan plateau. Soil and Tillage Research, 2020, 200, 104619.	5.6	20
33	Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China. Agronomy, 2020, 10, 774.	3.0	2
34	Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateau—A caseâ€study of the Jing River Basin. Land Degradation and Development, 2020, 31, 1622-1640.	3.9	21
35	Soil properties of apple orchards on China's Loess Plateau. Science of the Total Environment, 2020, 723, 138041.	8.0	42
36	The tradeoff between soil erosion protection and water consumption in revegetation: Evaluation of new indicators and influencing factors. Geoderma, 2019, 347, 32-39.	5.1	18

#	Article	IF	Citations
37	Land Use Affects Soil Moisture Response to Dramatic Shortâ€term Rainfall Events in a Hillslope Catchment of the Chinese Loess Plateau. Agronomy Journal, 2019, 111, 1506-1515.	1.8	11
38	Impacts of future climate and agricultural landâ€use changes on regional agricultural water use in a large irrigation district of northwest China. Land Degradation and Development, 2019, 30, 1158-1171.	3.9	10
39	Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs. Science of the Total Environment, 2019, 650, 891-899.	8.0	26
40	Testing of observation operators designed to estimate profile soil moisture from surface measurements. Hydrological Processes, 2019, 33, 575-584.	2.6	15
41	Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system. Plant and Soil, 2019, 439, 113-130.	3.7	36
42	Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. Journal of Hydrology, 2018, 558, 432-441.	5.4	49
43	Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma, 2018, 319, 61-69.	5.1	106
44	Study on Water Suitability of Apple Plantations in the Loess Plateau under Climate Change. International Journal of Environmental Research and Public Health, 2018, 15, 2504.	2.6	7
45	Estimation of Actual Evapotranspiration in a Semiarid Region Based on GRACE Gravity Satellite Data—A Case Study in Loess Plateau. Remote Sensing, 2018, 10, 2032.	4.0	5
46	Revegetation modifies patterns of temporal soil respiration responses to extreme-drying-and-rewetting in a semiarid ecosystem. Plant and Soil, 2018, 433, 227-241.	3.7	9
47	Vegetative filter strips—Effect of vegetation type and shape of strip on runâ€off and sediment trapping. Land Degradation and Development, 2018, 29, 3917-3927.	3.9	7
48	Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, 2018, 263, 207-216.	4.8	57
49	Application Rate Influences the Soil and Water Conservation Effectiveness of Mulching with Chipped Branches. Soil Science Society of America Journal, 2018, 82, 447-454.	2.2	12
50	Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid Plantations in China. Agriculture, Ecosystems and Environment, 2018, 265, 392-401.	5. 3	49
51	Extreme natural drought enhances interspecific facilitation in semiarid agroforestry systems. Agriculture, Ecosystems and Environment, 2018, 265, 444-453.	5.3	52
52	Soil water and root distribution of apple tree (Malus pumila Mill) stands in relation to stand age and rainwater collection and infiltration system (RWCI) in a hilly region of the Loess Plateau, China. Catena, 2018, 170, 324-334.	5.0	57
53	Soil Water Content and Root Patterns in a Rainâ€fed Jujube Plantation across Stand Ages on the Loess Plateau of China. Land Degradation and Development, 2017, 28, 207-216.	3.9	50
54	Variations of Soil Organic Carbon Following Land Use Change on Deep‣oess Hillsopes in China. Land Degradation and Development, 2017, 28, 1902-1912.	3.9	58

#	Article	IF	CITATIONS
55	Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards. Agricultural Water Management, 2017, 184, 135-144.	5.6	15
56	Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China. Agricultural Water Management, 2017, 184, 170-177.	5.6	54
57	Dynamics of runoff and sediment trapping performance of vegetative filter strips: Run-on experiments and modeling. Science of the Total Environment, 2017, 593-594, 54-64.	8.0	31
58	Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 2017, 595, 191-200.	8.0	142
59	Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau. Science of the Total Environment, 2017, 579, 1550-1559.	8.0	57
60	Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Research, 2017, 214, 1-13.	5.1	57
61	Soil water effects of agroforestry in rainfed jujube (Ziziphus jujube Mill.) orchards on loess hillslopes in Northwest China. Agriculture, Ecosystems and Environment, 2017, 247, 343-351.	5.3	52
62	Simulation Study of the Impact of Permanent Groundcover on Soil and Water Changes in Jujube Orchards on Sloping Ground. Land Degradation and Development, 2016, 27, 946-954.	3.9	25
63	Spatial and temporal trends in climatic variables in arid areas of northwest China. International Journal of Climatology, 2016, 36, 4118-4129.	3.5	12
64	Simulated Study on Effects of Ground Managements on Soil Water and Available Nutrients in Jujube Orchards. Land Degradation and Development, 2016, 27, 35-42.	3.9	52
65	Effects of large gullies on catchment-scale soil moisture spatial behaviors: A case study on the Loess Plateau of China. Geoderma, 2016, 261, 1-10.	5.1	62
66	Development and evaluation of a physically based multiscalar drought index: The Standardized Moisture Anomaly Index. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,575.	3.3	59
67	Catchment-scale variability of absolute versus temporal anomaly soil moisture: Time-invariant part not always plays the leading role. Journal of Hydrology, 2015, 529, 1669-1678.	5.4	23
68	Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 2015, 204, 58-66.	4.8	71
69	An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Science of the Total Environment, 2015, 529, 10-20.	8.0	73
70	Evaluation of crop production, trade, and consumption from the perspective of water resources: A case study of the Hetao irrigation district, China, for 1960–2010. Science of the Total Environment, 2015, 505, 1174-1181.	8.0	39
71	Water productivity evaluation for grain crops in irrigated regions of China. Ecological Indicators, 2015, 55, 107-117.	6.3	28
72	Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China. Agricultural Water Management, 2015, 161, 77-85.	5.6	26

#	Article	IF	Citations
73	Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea) Tj ETQq1	1.0.7843	14 rgBT /O
74	Maize–Soybean Intercropping Interactions Above and Below Ground. Crop Science, 2014, 54, 914-922.	1.8	61
75	Assessing the spatial and temporal variation of the rainwater harvesting potential (1971-2010) on the Chinese Loess Plateau using the VIC model. Hydrological Processes, 2014, 28, 534-544.	2.6	39
76	Comparison of classification methods for the divisions of wet/dry climate regions in Northwest China. International Journal of Climatology, 2014, 34, 2163-2174.	3. 5	13
77	Spatiotemporal analysis of climate variability (1971–2010) in spring and summer on the Loess Plateau, China. Hydrological Processes, 2014, 28, 1689-1702.	2.6	32
78	GANN models for reference evapotranspiration estimation developed with weather data from different climatic regions. Theoretical and Applied Climatology, 2014, 116, 481-489.	2.8	21
79	Effects of permanent ground cover on soil moisture in jujube orchards under sloping ground: A simulation study. Agricultural Water Management, 2014, 138, 68-77.	5.6	27
80	Statistical analyses and controls of root-zone soil moisture in a large gully of the Loess Plateau. Environmental Earth Sciences, 2014, 71, 4801-4809.	2.7	16
81	Water Footprint of Grain Product in Irrigated Farmland of China. Water Resources Management, 2014, 28, 2213-2227.	3.9	39
82	Effects of vegetation cover of natural grassland on runoff and sediment yield in loess hilly region of China. Journal of the Science of Food and Agriculture, 2014, 94, 497-503.	3. 5	26
83	Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China. Journal of the Science of Food and Agriculture, 2014, 94, 2992-3000.	3.5	26
84	Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. Field Crops Research, 2014, 167, 19-30.	5.1	64
85	Changes of soil hydraulic properties under early-stage natural vegetation recovering on the Loess Plateau of China. Catena, 2014, 113, 386-391.	5.0	56
86	Meteorological drought over the Chinese Loess Plateau: 1971–2010. Natural Hazards, 2013, 67, 951-961.	3.4	21
87	A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. Theoretical and Applied Climatology, 2013, 114, 125-138.	2.8	25
88	Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. Journal of Hydrology, 2013, 486, 466-478.	5.4	52
89	Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China. Environmental Earth Sciences, 2013, 68, 2427-2438.	2.7	105
90	The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Science of the Total Environment, 2013, 444, 498-507.	8.0	136

XINING ZHAO

#	ARTICLE	IF	CITATION
91	Runoff and sediment yield under simulated rainfall on hillslopes in the Loess Plateau of China. Soil Research, 2013, 51, 50.	1.1	39
92	Estimating the spatial means and variability of root-zone soil moisture in gullies using measurements from nearby uplands. Journal of Hydrology, 2013, 476, 28-41.	5.4	43
93	Effects of atmospheric ammonia enrichment and nitrogen status on the growth of maize. Soil Science and Plant Nutrition, 2012, 58, 32-40.	1.9	4
94	Waterâ€Saving Crop Planning Using Multiple Objective Chaos Particle Swarm Optimization for Sustainable Agricultural and Soil Resources Development. Clean - Soil, Air, Water, 2012, 40, 1376-1384.	1.1	19
95	Projection Pursuit Evaluation Model: Optimizing Scheme of Crop Planning for Agricultural Sustainable Development and Soil Resources Utilization. Clean - Soil, Air, Water, 2012, 40, 592-598.	1.1	2
96	Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability. Agricultural Water Management, 2011, 102, 66-73.	5.6	73
97	Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. Catena, 2011, 87, 357-367.	5.0	107
98	Impact of climate change and irrigation technology advancement on agricultural water use in China. Climatic Change, 2010, 100, 797-805.	3.6	53
99	Effects of Elevated Ammonia Concentration and Nitrogen Status on the Growth and Yield of Winter Wheat. Agronomy Journal, 2010, 102, 1194-1200.	1.8	2