
Xining Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3615051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 2017, 595, 191-200.	8.0	142
2	The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Science of the Total Environment, 2013, 444, 498-507.	8.0	136
3	Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. Catena, 2011, 87, 357-367.	5.0	107
4	Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma, 2018, 319, 61-69.	5.1	106
5	Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China. Environmental Earth Sciences, 2013, 68, 2427-2438.	2.7	105
6	Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability. Agricultural Water Management, 2011, 102, 66-73.	5.6	73
7	An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Science of the Total Environment, 2015, 529, 10-20.	8.0	73
8	Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 2015, 204, 58-66.	4.8	71
9	Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. Field Crops Research, 2014, 167, 19-30.	5.1	64
10	Effects of large gullies on catchment-scale soil moisture spatial behaviors: A case study on the Loess Plateau of China. Geoderma, 2016, 261, 1-10.	5.1	62
11	Maize–Soybean Intercropping Interactions Above and Below Ground. Crop Science, 2014, 54, 914-922.	1.8	61
12	Development and evaluation of a physically based multiscalar drought index: The Standardized Moisture Anomaly Index. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,575.	3.3	59
13	Variations of Soil Organic Carbon Following Land Use Change on Deep‣oess Hillsopes in China. Land Degradation and Development, 2017, 28, 1902-1912.	3.9	58
14	Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau. Science of the Total Environment, 2017, 579, 1550-1559.	8.0	57
15	Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Research, 2017, 214, 1-13.	5.1	57
16	Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, 2018, 263, 207-216.	4.8	57
17	Soil water and root distribution of apple tree (Malus pumila Mill) stands in relation to stand age and rainwater collection and infiltration system (RWCI) in a hilly region of the Loess Plateau, China. Catena, 2018, 170, 324-334.	5.0	57
18	Changes of soil hydraulic properties under early-stage natural vegetation recovering on the Loess Plateau of China. Catena, 2014, 113, 386-391.	5.0	56

#	Article	IF	CITATIONS
19	Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China. Agricultural Water Management, 2017, 184, 170-177.	5.6	54
20	Impact of climate change and irrigation technology advancement on agricultural water use in China. Climatic Change, 2010, 100, 797-805.	3.6	53
21	Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. Journal of Hydrology, 2013, 486, 466-478.	5.4	52
22	Simulated Study on Effects of Ground Managements on Soil Water and Available Nutrients in Jujube Orchards. Land Degradation and Development, 2016, 27, 35-42.	3.9	52
23	Soil water effects of agroforestry in rainfed jujube (Ziziphus jujube Mill.) orchards on loess hillslopes in Northwest China. Agriculture, Ecosystems and Environment, 2017, 247, 343-351.	5.3	52
24	Extreme natural drought enhances interspecific facilitation in semiarid agroforestry systems. Agriculture, Ecosystems and Environment, 2018, 265, 444-453.	5.3	52
25	Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea) Tj ETQq1	10.7843 4.1	314 rgBT /O
26	Soil Water Content and Root Patterns in a Rainâ€fed Jujube Plantation across Stand Ages on the Loess Plateau of China. Land Degradation and Development, 2017, 28, 207-216.	3.9	50
27	Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. Journal of Hydrology, 2018, 558, 432-441.	5.4	49
28	Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid Plantations in China. Agriculture, Ecosystems and Environment, 2018, 265, 392-401.	5.3	49
29	Estimating the spatial means and variability of root-zone soil moisture in gullies using measurements from nearby uplands. Journal of Hydrology, 2013, 476, 28-41.	5.4	43
30	Soil properties of apple orchards on China's Loess Plateau. Science of the Total Environment, 2020, 723, 138041.	8.0	42
31	Age- and climate- related water use patterns of apple trees on China's Loess Plateau. Journal of Hydrology, 2020, 582, 124462.	5.4	41
32	Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila) Tj ETQq0 0 (137739.) rgBT /O\ 8.0	verlock 10 Tf 41
33	Runoff and sediment yield under simulated rainfall on hillslopes in the Loess Plateau of China. Soil Research, 2013, 51, 50.	1.1	39
34	Assessing the spatial and temporal variation of the rainwater harvesting potential (1971-2010) on the Chinese Loess Plateau using the VIC model. Hydrological Processes, 2014, 28, 534-544.	2.6	39
35	Water Footprint of Grain Product in Irrigated Farmland of China. Water Resources Management, 2014, 28, 2213-2227.	3.9	39
36	Evaluation of crop production, trade, and consumption from the perspective of water resources: A case study of the Hetao irrigation district, China, for 1960–2010. Science of the Total Environment, 2015, 505, 1174-1181.	8.0	39

#	Article	IF	CITATIONS
37	Target areas for harmonizing the Grain for Green Programme in China's Loess Plateau. Land Degradation and Development, 2020, 31, 325-333.	3.9	37
38	Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system. Plant and Soil, 2019, 439, 113-130.	3.7	36
39	Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system. Agricultural and Forest Meteorology, 2020, 290, 108034.	4.8	34
40	Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum) Tj ETQqO 0 0	rgBT /Ove	rlock 10 Tf 50
41	The spatial and temporal evolution of the actual evapotranspiration based on the remote sensing method in the Loess Plateau. Science of the Total Environment, 2020, 708, 135111.	8.0	33
42	Spatiotemporal analysis of climate variability (1971–2010) in spring and summer on the Loess Plateau, China. Hydrological Processes, 2014, 28, 1689-1702.	2.6	32
43	Dynamics of runoff and sediment trapping performance of vegetative filter strips: Run-on experiments and modeling. Science of the Total Environment, 2017, 593-594, 54-64.	8.0	31
44	Water productivity evaluation for grain crops in irrigated regions of China. Ecological Indicators, 2015, 55, 107-117.	6.3	28
45	New problems of food security in Northwest China: A sustainability perspective. Land Degradation and Development, 2020, 31, 975-989.	3.9	28
46	The economic–environmental trade-off of growing apple trees in the drylands of China: A conceptual framework for sustainable intensification. Journal of Cleaner Production, 2021, 296, 126497.	9.3	28
47	Effects of permanent ground cover on soil moisture in jujube orchards under sloping ground: A simulation study. Agricultural Water Management, 2014, 138, 68-77.	5.6	27
48	Effects of vegetation cover of natural grassland on runoff and sediment yield in loess hilly region of China. Journal of the Science of Food and Agriculture, 2014, 94, 497-503.	3.5	26
49	Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China. Journal of the Science of Food and Agriculture, 2014, 94, 2992-3000.	3.5	26
50	Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China. Agricultural Water Management, 2015, 161, 77-85.	5.6	26
51	Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs. Science of the Total Environment, 2019, 650, 891-899.	8.0	26
52	Subsurface irrigation with ceramic emitters: An effective method to improve apple yield and irrigation water use efficiency in the semiarid Loess Plateau. Agriculture, Ecosystems and Environment, 2021, 313, 107404.	5.3	26
53	A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. Theoretical and Applied Climatology, 2013, 114, 125-138.	2.8	25
54	Simulation Study of the Impact of Permanent Groundcover on Soil and Water Changes in Jujube Orchards on Sloping Ground. Land Degradation and Development, 2016, 27, 946-954.	3.9	25

#	Article	IF	CITATIONS
55	Catchment-scale variability of absolute versus temporal anomaly soil moisture: Time-invariant part not always plays the leading role. Journal of Hydrology, 2015, 529, 1669-1678.	5.4	23
56	Meteorological drought over the Chinese Loess Plateau: 1971–2010. Natural Hazards, 2013, 67, 951-961.	3.4	21
57	GANN models for reference evapotranspiration estimation developed with weather data from different climatic regions. Theoretical and Applied Climatology, 2014, 116, 481-489.	2.8	21
58	Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Research, 2020, 256, 107924.	5.1	21
59	Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateau—A caseâ€study of the Jing River Basin. Land Degradation and Development, 2020, 31, 1622-1640.	3.9	21
60	Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the tibetan plateau. Soil and Tillage Research, 2020, 200, 104619.	5.6	20
61	Quantifying the importance of deep root water uptake for apple trees' hydrological and physiological performance in drylands. Journal of Hydrology, 2022, 606, 127471.	5.4	20
62	Waterâ€Saving Crop Planning Using Multiple Objective Chaos Particle Swarm Optimization for Sustainable Agricultural and Soil Resources Development. Clean - Soil, Air, Water, 2012, 40, 1376-1384.	1.1	19
63	Effect of the fodder species canola (Brassica napus L.) and daylily (Hemerocallis fulva L.) on soil physical properties and soil water content in a rainfed orchard on the semiarid Loess Plateau, China. Plant and Soil, 2020, 453, 209-228.	3.7	19
64	Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards. Agricultural Water Management, 2020, 242, 106400.	5.6	19
65	The tradeoff between soil erosion protection and water consumption in revegetation: Evaluation of new indicators and influencing factors. Geoderma, 2019, 347, 32-39.	5.1	18
66	Seasonal effects of intercropping on tree water use strategies in semiarid plantations: Evidence from natural and labelling stable isotopes. Plant and Soil, 2020, 453, 229-243.	3.7	18
67	Statistical analyses and controls of root-zone soil moisture in a large gully of the Loess Plateau. Environmental Earth Sciences, 2014, 71, 4801-4809.	2.7	16
68	Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards. Agricultural Water Management, 2017, 184, 135-144.	5.6	15
69	Testing of observation operators designed to estimate profile soil moisture from surface measurements. Hydrological Processes, 2019, 33, 575-584.	2.6	15
70	Comparison of classification methods for the divisions of wet/dry climate regions in Northwest China. International Journal of Climatology, 2014, 34, 2163-2174.	3.5	13
71	Spatial and temporal trends in climatic variables in arid areas of northwest China. International Journal of Climatology, 2016, 36, 4118-4129.	3.5	12
72	Application Rate Influences the Soil and Water Conservation Effectiveness of Mulching with Chipped Branches. Soil Science Society of America Journal, 2018, 82, 447-454.	2.2	12

#	Article	IF	CITATIONS
73	Impact of land management practices on water use strategy for a dryland tree plantation and subsequent responses to drought. Land Degradation and Development, 2021, 32, 439-452.	3.9	12
74	Measurements and modeling of hydrological responses to summer pruning in dryland apple orchards. Journal of Hydrology, 2021, 594, 125651.	5.4	12
75	Land Use Affects Soil Moisture Response to Dramatic Shortâ€ŧerm Rainfall Events in a Hillslope Catchment of the Chinese Loess Plateau. Agronomy Journal, 2019, 111, 1506-1515.	1.8	11
76	Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau. Agricultural Water Management, 2021, 255, 107010.	5.6	11
77	Impacts of future climate and agricultural landâ€use changes on regional agricultural water use in a large irrigation district of northwest China. Land Degradation and Development, 2019, 30, 1158-1171.	3.9	10
78	A new solution of high-efficiency rainwater irrigation mode for water management in apple plantation: Design and application. Agricultural Water Management, 2022, 259, 107243.	5.6	10
79	Revegetation modifies patterns of temporal soil respiration responses to extreme-drying-and-rewetting in a semiarid ecosystem. Plant and Soil, 2018, 433, 227-241.	3.7	9
80	Ecohydrological advantage of young apple tree-based agroforestry and its response to extreme droughts on the semiarid Loess Plateau. Agricultural and Forest Meteorology, 2022, 321, 108969.	4.8	9
81	Mulching Measures Improve Soil Moisture in Rain-Fed Jujube (Ziziphus jujuba Mill.) Orchards in the Loess Hilly Region of China. Sustainability, 2021, 13, 610.	3.2	8
82	Study on Water Suitability of Apple Plantations in the Loess Plateau under Climate Change. International Journal of Environmental Research and Public Health, 2018, 15, 2504.	2.6	7
83	Vegetative filter strips—Effect of vegetation type and shape of strip on runâ€off and sediment trapping. Land Degradation and Development, 2018, 29, 3917-3927.	3.9	7
84	Water Deficit Modulates the CO2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. Frontiers in Plant Science, 2021, 12, 775477.	3.6	6
85	The efficiency of organic C sequestration in deep soils is enhanced by drier climates. Geoderma, 2022, 415, 115774.	5.1	6
86	Redesign of dryland apple orchards by intercropping the bioenergy crop canola (<i>Brassica napus</i>) Tj ETQq	0 0 0 rgBT 5.6	[/Oyerlock 10
87	Estimation of Actual Evapotranspiration in a Semiarid Region Based on GRACE Gravity Satellite Data—A Case Study in Loess Plateau. Remote Sensing, 2018, 10, 2032.	4.0	5
88	Comparison of the root–soil water relationship of two typical revegetation species along a precipitation gradient on the Loess Plateau. Environmental Research Letters, 2021, 16, 064054.	5.2	5
89	Impacts of land use conversion on the response of soil respiration to precipitation in drylands: A case study with four-yearlong observations. Agricultural and Forest Meteorology, 2021, 304-305, 108426.	4.8	5
90	Dynamics of interspecific water relationship in vertical and horizontal dimensions under a dryland apple-Brassica intercropping system: Quantifying by experiments and the 3D Hi-sAFe model. Agricultural and Forest Meteorology, 2021, 310, 108620.	4.8	5

#	Article	IF	CITATIONS
91	Effects of atmospheric ammonia enrichment and nitrogen status on the growth of maize. Soil Science and Plant Nutrition, 2012, 58, 32-40.	1.9	4
92	Vertical variation in shallow and deep soil moisture in an apple orchard in the loess hilly–gully area of north China. Soil Use and Management, 2021, 37, 595-606.	4.9	4
93	Spatial and Temporal Characteristics of Precipitation and Potential Influencing Factors in the Loess Plateau before and after the Implementation of the Grain for Green Project. Water (Switzerland), 2021, 13, 234.	2.7	4
94	Impacts of Interspecific Interactions on Crop Growth and Yield in Wheat (Triticum aestivum L.)/Maize (Zea mays L.) Strip Intercropping under Different Water and Nitrogen Levels. Agronomy, 2022, 12, 951.	3.0	4
95	Evaluating the longâ€term ecohydrological suitability of restoration efforts in a typical watershed of the Loess Plateau. Hydrological Processes, 2021, 35, e14362.	2.6	3
96	Effects of Elevated Ammonia Concentration and Nitrogen Status on the Growth and Yield of Winter Wheat. Agronomy Journal, 2010, 102, 1194-1200.	1.8	2
97	Projection Pursuit Evaluation Model: Optimizing Scheme of Crop Planning for Agricultural Sustainable Development and Soil Resources Utilization. Clean - Soil, Air, Water, 2012, 40, 592-598.	1.1	2
98	Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China. Agronomy, 2020, 10, 774.	3.0	2
99	Ridge cropping and furrow irrigation pattern improved spring maize (<i>Zea mays</i> L.) yield and water productivity in Hetao irrigation area of northâ€western China. Journal of the Science of Food and Agriculture, 2022, 102, 6889-6898.	3.5	2