Weimin Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3614970/publications.pdf Version: 2024-02-01

WEIMIN HANC

#	Article	IF	CITATIONS
1	Qualitative Proteome-Wide Analysis Reveals the Diverse Functions of Lysine Crotonylation in Dendrobium huoshanense. Frontiers in Plant Science, 2022, 13, 822374.	3.6	7
2	Comparative proteomics reveals biochemical changes in Salvia miltiorrhiza Bunge during sweating processing. Journal of Ethnopharmacology, 2022, 293, 115329.	4.1	0
3	AaWRKY4 upregulates artemisinin content through boosting the expressions of key enzymes in artemisinin biosynthetic pathway. Plant Cell, Tissue and Organ Culture, 2021, 146, 97-105.	2.3	8
4	A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis. Scientific Reports, 2021, 11, 9810.	3.3	13
5	The complete chloroplast genome of <i>Epilobium hirsutum</i> L. (Onagraceae). Mitochondrial DNA Part B: Resources, 2021, 6, 2174-2176.	0.4	3
6	Putative genes in alkaloid biosynthesis identified in Dendrobium officinale by correlating the contents of major bioactive metabolites with genes expression between Protocorm-like bodies and leaves. BMC Genomics, 2021, 22, 579.	2.8	26
7	UPLC/MS-based untargeted metabolomics reveals the changes of metabolites profile of Salvia miltiorrhiza bunge during Sweating processing. Scientific Reports, 2020, 10, 19524.	3.3	28
8	The complete chloroplast genome sequence of Gynostemma yixingense and comparative analysis with congeneric species. Genetics and Molecular Biology, 2020, 43, e20200092.	1.3	5
9	Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in Artemisia annua. Journal of Experimental Botany, 2019, 70, 3969-3979.	4.8	46
10	The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis. Molecular Plant, 2018, 11, 776-788.	8.3	205
11	The roles of <i>Aa<scp>MIXTA</scp>1</i> in regulating the initiation of glandular trichomes and cuticle biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2018, 217, 261-276.	7.3	119
12	Aa <scp>MYB</scp> 1 and its orthologue At <scp>MYB</scp> 61 affect terpene metabolism and trichome development in <i>Artemisia annua</i> and <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 90, 520-534.	5.7	163
13	Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell, Tissue and Organ Culture, 2017, 129, 251-259.	2.3	35
14	<scp>GLANDULAR TRICHOME</scp> â€< scp>SPECIFIC WRKY 1 promotes artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2017, 214, 304-316.	7.3	171
15	<scp>HOMEODOMAIN PROTEIN</scp> 1 is required for jasmonateâ€mediated glandular trichome initiation in <i>Artemisia annua</i> . New Phytologist, 2017, 213, 1145-1155.	7.3	170
16	Overexpression of <i>AaWRKY1</i> Leads to an Enhanced Content of Artemisinin in <i>Artemisia annua</i> . BioMed Research International, 2016, 2016, 1-9.	1.9	46
17	Tâ€shaped trichomeâ€specific expression of monoterpene synthase ADH2 using promoter–βâ€GUS fusion in transgenic <i>Artemisia annua</i> L Biotechnology and Applied Biochemistry, 2016, 63, 834-840.	3.1	5
18	Characterization of a trichome-specific promoter of the aldehyde dehydrogenase 1 (ALDH1) gene in Artemisia annua. Plant Cell, Tissue and Organ Culture, 2016, 126, 469-480.	2.3	15

WEIMIN JIANG

#	Article	IF	CITATIONS
19	Branch Pathway Blocking in <i>Artemisia annua</i> is a Useful Method for Obtaining High Yield Artemisinin. Plant and Cell Physiology, 2016, 57, 588-602.	3.1	70
20	Overexpression of Allene Oxide Cyclase Improves the Biosynthesis of Artemisinin in Artemisia annua L PLoS ONE, 2014, 9, e91741.	2.5	27
21	Molecular Cloning and Characterization of a Trichome-Specific Promoter of Artemisinic Aldehyde Δ11(13) Reductase (DBR2) in Artemisia annua. Plant Molecular Biology Reporter, 2014, 32, 82-91.	1.8	35
22	Characterization of the Promoter of Artemisia annua Amorpha-4,11-diene Synthase (ADS) Gene Using Homologous and Heterologous Expression as well as Deletion Analysis. Plant Molecular Biology Reporter, 2014, 32, 406-418.	1.8	20
23	The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L Plant Biotechnology Reports, 2013, 7, 287-295.	1.5	34
24	Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Industrial Crops and Products, 2013, 49, 380-385.	5.2	33
25	<i><scp>A</scp>a<scp>ORA</scp></i> , a trichomeâ€specific <scp>AP</scp> 2/ <scp>ERF</scp> transcription factor of <i><scp>A</scp>rtemisia annua</i> , is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to <i><scp>B</scp>otrytis cinerea</i> . New Phytologist, 2013, 198, 1191-1202.	7.3	255
26	AaERF1 Positively Regulates the Resistance to Botrytis cinerea in Artemisia annua. PLoS ONE, 2013, 8, e57657.	2.5	38
27	Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genetics and Molecular Research, 2012, 11, 3298-3309.	0.2	72
28	Characterization of a novel ERF transcription factor in Artemisia annua and its induction kinetics after hormones and stress treatments. Molecular Biology Reports, 2012, 39, 9521-9527.	2.3	12
29	Identification of Putative Artemisia annua ABCG Transporter Unigenes Related to Artemisinin Yield Following Expression Analysis in Different Plant Tissues and in Response to Methyl Jasmonate and Abscisic Acid Treatments. Plant Molecular Biology Reporter, 2012, 30, 838-847.	1.8	20
30	Characterization of the first specific jasmonate biosynthetic pathway gene allene oxide synthase from Artemisia annua. Molecular Biology Reports, 2012, 39, 2267-2274.	2.3	7
31	Molecular Cloning and Functional Characterization of a \hat{l}^2 -Glucosidase Gene to Produce Platycodin D in Platycodon grandiflorus. Frontiers in Plant Science, 0, 13, .	3.6	2
32	Comparative Proteome and Phosphoproteome Analyses Reveal Different Molecular Mechanism Between Stone Planting Under the Forest and Greenhouse Planting of Dendrobium huoshanense. Frontiers in Plant Science, 0, 13, .	3.6	7