Jongmin Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3614575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monodisperse Perovskite Colloidal Quantum Dots Enable High-Efficiency Photovoltaics. ACS Energy Letters, 2021, 6, 2229-2237.	17.4	26
2	A Short Review on Interface Engineering of Perovskite Solar Cells: A Selfâ€Assembled Monolayer and Its Roles. Solar Rrl, 2020, 4, 1900251.	5.8	75
3	Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient. Advanced Materials, 2020, 32, e1906497.	21.0	47
4	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications, 2020, 11, 103.	12.8	181
5	Improved Eco-Friendly Photovoltaics Based on Stabilized AgBiS ₂ Nanocrystal Inks. Chemistry of Materials, 2020, 32, 10007-10014.	6.7	28
6	Recent Research Progress in Surface Ligand Exchange of PbS Quantum Dots for Solar Cell Application. Applied Sciences (Switzerland), 2020, 10, 975.	2.5	20
7	Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics. Nano Energy, 2019, 66, 104130.	16.0	88
8	A Facet‧pecific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 2019, 31, e1805580.	21.0	87
9	Amideâ€Catalyzed Phaseâ€Selective Crystallization Reduces Defect Density in Wideâ€Bandgap Perovskites. Advanced Materials, 2018, 30, e1706275.	21.0	80
10	Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes. ACS Energy Letters, 2018, 3, 2908-2913.	17.4	20
11	Butylamine atalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells. Advanced Materials, 2018, 30, e1803830.	21.0	67
12	Activated Electronâ€Transport Layers for Infrared Quantum Dot Optoelectronics. Advanced Materials, 2018, 30, e1801720.	21.0	57
13	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	13.7	326
14	Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 4417-4423.	9.1	57
15	Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental, 2017, 205, 386-392.	20.2	73
16	Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%). ACS Energy Letters, 2017, 2, 2667-2673.	17.4	180
17	Enhanced Openâ€Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivityâ€Controlled Solutionâ€Phase Ligand Exchange. Advanced Materials, 2017, 29, 1703627.	21.0	49
18	Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2017, 29, 1702350.	21.0	126

Jongmin Choi

#	Article	IF	CITATIONS
19	Well-Defined Nanostructured, Single-Crystalline TiO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano, 2016, 10, 6029-6036.	14.6	196
20	Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites. Scientific Reports, 2016, 6, 22987.	3.3	23
21	A Competitive Electron Transport Mechanism in Hierarchical Homogeneous Hybrid Structures Composed of TiO2 Nanoparticles and Nanotubes. Chemistry of Materials, 2015, 27, 1359-1366.	6.7	30
22	Highly Efficient Solar Water Splitting from Transferred TiO ₂ Nanotube Arrays. Nano Letters, 2015, 15, 5709-5715.	9.1	95
23	Doubly open-ended TiO ₂ nanotube arrays decorated with a few nm-sized TiO ₂ nanoparticles for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14380.	10.3	17
24	Dye-Sensitized Solar Cells Employing Doubly or Singly Open-Ended TiO ₂ Nanotube Arrays: Structural Geometry and Charge Transport. ACS Applied Materials & Interfaces, 2014, 6, 15388-15394.	8.0	21
25	A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte. Energy and Environmental Science, 2013, 6, 1559.	30.8	48
26	Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells. Chemical Communications, 2012, 48, 8748.	4.1	39
27	Thermodynamic Control over the Competitive Anchoring of N719 Dye on Nanocrystalline TiO ₂ for Improving Photoinduced Electron Generation. Langmuir, 2011, 27, 14647-14653.	3.5	35