Michael J Bidochka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3614255/publications.pdf Version: 2024-02-01

MICHAEL I RIDOCHKA

#	Article	IF	CITATIONS
1	Profiling Destruxin Synthesis by Specialist and Generalist Metarhizium Insect Pathogens during Coculture with Plants. Applied and Environmental Microbiology, 2022, 88, .	3.1	1
2	Fungal Effector Proteins: Molecular Mediators of Fungal Symbionts of Plants. Rhizosphere Biology, 2022, , 297-321.	0.6	1
3	Abscisic acid implicated in differential plant responses of Phaseolus vulgaris during endophytic colonization by Metarhizium and pathogenic colonization by Fusarium. Scientific Reports, 2021, 11, 11327.	3.3	8
4	Localization of the insect pathogenic fungal plant symbionts Metarhizium robertsii and Metarhizium brunneum in bean and corn roots. Fungal Biology, 2020, 124, 877-883.	2.5	11
5	The multifunctional lifestyles of Metarhizium: evolution and applications. Applied Microbiology and Biotechnology, 2020, 104, 9935-9945.	3.6	35
6	Plant microbiome analysis after MetarhiziumÂamendment reveals increases in abundance of plant growth-promoting organismsÂand maintenance of disease-suppressive soil. PLoS ONE, 2020, 15, e0231150.	2.5	42
7	DNA methyltransferase implicated in the recovery of conidiation, through successive plant passages, in phenotypically degenerated Metarhizium. Applied Microbiology and Biotechnology, 2020, 104, 5371-5383.	3.6	5
8	Generalist and specialist Metarhizium insect pathogens retain ancestral ability to colonize plant roots. Fungal Ecology, 2019, 41, 209-217.	1.6	32
9	Availability of carbon and nitrogen in soil affects Metarhizium robertsii root colonization and transfer of insect-derived nitrogen. FEMS Microbiology Ecology, 2019, 95, .	2.7	6
10	Metarhizium robertsii ammonium permeases (MepC and Mep2) contribute to rhizoplaneÂcolonization and modulates the transfer of insect derived nitrogen to plants. PLoS ONE, 2019, 14, e0223718.	2.5	7
11	A review on the genus <i>Metarhizium</i> as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Science and Technology, 2019, 29, 83-102.	1.3	66
12	Diversity and abundance of entomopathogenic fungi at ant colonies. Journal of Invertebrate Pathology, 2018, 156, 73-76.	3.2	17
13	"Sleepers―and "Creepers― A Theoretical Study of Colony Polymorphisms in the Fungus Metarhizium Related to Insect Pathogenicity and Plant Rhizosphere Colonization. Insects, 2018, 9, 104.	2.2	7
14	Hydrophobins contribute to root colonization and stress responses in the rhizosphere-competent insect pathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2018, 164, 517-528.	1.8	29
15	Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology (United Kingdom), 2018, 164, 1531-1540.	1.8	30
16	Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nature Communications, 2017, 8, 14245.	12.8	106
17	Genomeâ€wide identification of pathogenicity, conidiation and colony sectorization genes in <i>Metarhizium robertsii</i> . Environmental Microbiology, 2017, 19, 3896-3908.	3.8	24
18	Physiological and phylogenetic variability of Mexican Metarhizium strains. BioControl, 2017, 62, 779-791.	2.0	8

Michael J Bidochka

#	Article	IF	CITATIONS
19	Agrobacterium-Mediated Co-transformation of Multiple Genes in Metarhizium robertsii. Mycobiology, 2017, 45, 84-89.	1.7	4
20	Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology, 2016, 90, 657-664.	3.9	134
21	Field Trial of Aqueous and Emulsion Preparations of Entomopathogenic Fungi Against the Asian Citrus Psyllid (Hemiptera: Liviidae) in a Lime Orchard in Mexico. Journal of Entomological Science, 2015, 50, 79-87.	0.3	13
22	Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity. Journal of Invertebrate Pathology, 2015, 132, 142-148.	3.2	62
23	Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 2015, 13, 112-119.	1.6	148
24	Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 2014, 19, 734-740.	8.8	185
25	Ubiquity of Insect-Derived Nitrogen Transfer to Plants by Endophytic Insect-Pathogenic Fungi: an Additional Branch of the Soil Nitrogen Cycle. Applied and Environmental Microbiology, 2014, 80, 1553-1560.	3.1	150
26	Antagonism of the endophytic insect pathogenic fungus <i>Metarhizium robertsii</i> against the bean plant pathogen <i>Fusarium solani</i> f. sp. <i>phaseoli</i> . Canadian Journal of Plant Pathology, 2013, 35, 288-293.	1.4	83
27	Potential agricultural benefits through biotechnological manipulation of plant fungal associations. BioEssays, 2013, 35, 328-331.	2.5	13
28	Insects as a Nitrogen Source for Plants. Insects, 2013, 4, 413-424.	2.2	29
29	Nutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts. Communicative and Integrative Biology, 2013, 6, e22321.	1.4	22
30	Variability in the Insect and Plant Adhesins, Mad1 and Mad2, within the Fungal Genus Metarhizium Suggest Plant Adaptation as an Evolutionary Force. PLoS ONE, 2013, 8, e59357.	2.5	20
31	A PCR-based method to identify Entomophaga spp. infections in North American grasshoppers. Journal of Invertebrate Pathology, 2012, 109, 169-171.	3.2	5
32	Endophytic Insect-Parasitic Fungi Translocate Nitrogen Directly from Insects to Plants. Science, 2012, 336, 1576-1577.	12.6	325
33	The insectâ€pathogenic fungus <i>Metarhizium robertsii</i> (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 2012, 99, 101-107.	1.7	243
34	Effect of group size and caste ratio on individual survivorship and social immunity in a subterranean termite. Acta Ethologica, 2012, 15, 55-63.	0.9	15
35	Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology (United Kingdom), 2011, 157, 2904-2911.	1.8	128
36	Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii. Fungal Biology, 2011, 115, 1174-1185.	2.5	24

Michael J Bidochka

#	Article	IF	CITATIONS
37	Flexible metabolism in Metarhizium anisopliae and Beauveria bassiana: role of the glyoxylate cycle during insect pathogenesis. Microbiology (United Kingdom), 2011, 157, 199-208.	1.8	29
38	Could insect phagocytic avoidance by entomogenous fungi have evolved via selection against soil amoeboid predators?. Microbiology (United Kingdom), 2010, 156, 2164-2171.	1.8	61
39	A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genetics and Biology, 2010, 47, 602-607.	2.1	65
40	A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology (United) Tj ETQq0 0 0 rg	3T ‡@ verlo	ck7b0 Tf 50 6
41	Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology, 2006, 52, 623-626.	1.7	93
42	Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycological Research, 2006, 110, 1165-1171.	2.5	104
43	Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycological Research, 2005, 109, 307-313.	2.5	59
44	Nucleotide Sequence Variation Does Not Relate to Differences in Kinetic Properties of Neutral Trehalase from the Insect Pathogenic Fungus Metarhizium anisopliae. Current Microbiology, 2004, 48, 428-34.	2.2	6
45	Are teleomorphs really necessary?: modelling the potential effects of Muller's Ratchet on deuteromycetous entomopathogenic fungi. Mycological Research, 2001, 105, 1014-1019.	2.5	12
46	Habitat Association in Two Genetic Groups of the Insect-Pathogenic Fungus Metarhizium anisopliae : Uncovering Cryptic Species?. Applied and Environmental Microbiology, 2001, 67, 1335-1342.	3.1	230
47	Occurrence of the entomopathogenic fungi <i>Metarhizium anisopliae</i> and <i>Beauveria bassiana</i> in soils from temperate and near-northern habitats. Canadian Journal of Botany, 1998, 76, 1198-1204.	1.1	61
48	Occurrence of the entomopathogenic fungi <1>Metarhizium anisopliae 1 and <1>Beauveria bassiana 1 in soils from temperate and near-northern habitats. Canadian Journal of Botany, 1998, 76, 1198-1204.	1.1	132
49	Co-transformation ofMetarhizium anisopliaeby electroporation or using the gene gun to produce stable GUS transformants. FEMS Microbiology Letters, 1995, 131, 289-294.	1.8	35
50	Differentiation of species and strains of entomopathogenic fungi by random amplification of polymorphic DNA (RAPD). Current Genetics, 1994, 25, 107-113.	1.7	143
51	Basic Proteases of Entomopathogenic Fungi Differ in Their Adsorption Properties to Insect Cuticle. Journal of Invertebrate Pathology, 1994, 64, 26-32.	3.2	27