
Andrew J Copp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3614217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dolutegravir and rat whole embryo culture. Birth Defects Research, 2022, 114, 23-24.	1.5	3
2	Two-Photon Cell and Tissue Level Laser Ablation Methods to Study Morphogenetic Biomechanics. Methods in Molecular Biology, 2022, 2438, 217-230.	0.9	2
3	Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery?. Advances in Nutrition, 2021, 12, 212-222.	6.4	25
4	Glycine Cleavage System H Protein Is Essential for Embryonic Viability, Implying Additional Function Beyond the Glycine Cleavage System. Frontiers in Genetics, 2021, 12, 625120.	2.3	12
5	Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nature Communications, 2021, 12, 1159.	12.8	24
6	Maternal ethnicity and the prevalence of British pregnancies affected by neural tube defects. Birth Defects Research, 2021, 113, 968-980.	1.5	9
7	Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
8	Genetic interaction of Pax3 mutation and canonical Wnt signaling modulates neural tube defects and neural crest abnormalities. Genesis, 2021, 59, e23445.	1.6	6
9	Inositols: From Established Knowledge to Novel Approaches. International Journal of Molecular Sciences, 2021, 22, 10575.	4.1	67
10	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	27.8	114
11	Dolutegravir in pregnant mice is associated with increased rates of fetal defects at therapeutic but not at supratherapeutic levels. EBioMedicine, 2021, 63, 103167.	6.1	25
12	Rescuing human fetal tissue research in the United States: A call for additional regulatory reform. Stem Cell Reports, 2021, 16, 2839-2843.	4.8	6
13	Vangl2-environment interaction causes severe neural tube defects, without abnormal neuroepithelial convergent extension. DMM Disease Models and Mechanisms, 2021, , .	2.4	5
14	Refinement of inducible gene deletion in embryos of pregnant mice. Birth Defects Research, 2020, 112, 196-204.	1.5	14
15	Dynamic acetylation profile during mammalian neurulation. Birth Defects Research, 2020, 112, 205-211.	1.5	2
16	Regulation of glycine metabolism by the glycine cleavage system and conjugation pathway in mouse models of <scp>nonâ€ketotic</scp> hyperglycinemia. Journal of Inherited Metabolic Disease, 2020, 43, 1186-1198.	3.6	17
17	An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs). Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 1187-1198.	3.3	20
18	Integrin-Mediated Focal Anchorage Drives Epithelial Zippering during Mouse Neural Tube Closure. Developmental Cell, 2020, 52, 321-334.e6.	7.0	46

#	Article	IF	CITATIONS
19	Impaired folate 1-carbon metabolism causes formate-preventable hydrocephalus in glycine decarboxylase–deficient mice. Journal of Clinical Investigation, 2020, 130, 1446-1452.	8.2	16
20	Genetic Basis of Neural Tube Defects. , 2020, , 2275-2294.		1
21	Mouse whole embryo culture: Evaluating the requirement for rat serum as culture medium. Birth Defects Research, 2019, 111, 1165-1177.	1.5	8
22	Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by Grhl2. Nature Communications, 2019, 10, 2487.	12.8	44
23	Genetics and Developmental Biology of Closed Dysraphic Conditions. , 2019, , 325-344.		2
24	Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. Journal of Cell Science, 2019, 132, .	2.0	19
25	Cellular mechanisms underlying Pax3-related neural tube defects and their prevention by folic acid. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	21
26	Novel mouse model of encephalocele: post-neurulation origin and relationship to open neural tube defects. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	20
27	Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice. Scientific Reports, 2018, 8, 3325.	3.3	5
28	Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	42
29	Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues. Developmental Biology, 2018, 435, 130-137.	2.0	24
30	Rho GTPases in mammalian spinal neural tube closure. Small GTPases, 2018, 9, 283-289.	1.6	19
31	Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infectious Diseases, The, 2018, 18, e1-e13.	9.1	92
32	Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos. Mechanisms of Development, 2018, 149, 20-26.	1.7	22
33	A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly. Clinical Genetics, 2018, 93, 870-879.	2.0	29
34	Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice. Human Molecular Genetics, 2018, 27, 4218-4230.	2.9	21
35	Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Research, 2017, 109, 68-80.	1.5	58
36	Perturbation of Retinoid Homeostasis Increases Malformation Risk in Embryos Exposed to Pregestational Diabetes. Diabetes, 2017, 66, 1041-1051.	0.6	17

#	Article	IF	CITATIONS
37	Neural tube closure: cellular, molecular and biomechanical mechanisms. Development (Cambridge), 2017, 144, 552-566.	2.5	402
38	Biomechanical coupling facilitates spinal neural tube closure in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5177-E5186.	7.1	92
39	Use of highâ€frequency ultrasound to study the prenatal development of cranial neural tube defects and hydrocephalus in <i>Cldc</i> â€deficient mice. Prenatal Diagnosis, 2017, 37, 273-281.	2.3	9
40	Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure. Cell Reports, 2017, 21, 1795-1808.	6.4	69
41	Genetic Basis of Neural Tube Defects. , 2017, , 1-28.		8
42	HDBR Expression: A Unique Resource for Global and Individual Gene Expression Studies during Early Human Brain Development. Frontiers in Neuroanatomy, 2016, 10, 86.	1.7	72
43	Inositol for the prevention of neural tube defects: a pilot randomised controlled trial. British Journal of Nutrition, 2016, 115, 974-983.	2.3	44
44	Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects. Biochimie, 2016, 126, 63-70.	2.6	23
45	Microtubules, polarity and vertebrate neural tube morphogenesis. Journal of Anatomy, 2016, 229, 63-74.	1.5	34
46	Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion. Cell Reports, 2016, 14, 440-448.	6.4	40
47	Regulation of cell protrusions by small GTPases during fusion of the neural folds. ELife, 2016, 5, e13273.	6.0	80
48	Rho kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure. Journal of Cell Science, 2015, 128, 2468-81.	2.0	70
49	Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nature Communications, 2015, 6, 6388.	12.8	116
50	Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the <i>splotch</i> mouse model. Magnetic Resonance in Medicine, 2015, 73, 731-739.	3.0	3
51	Spina bifida. Nature Reviews Disease Primers, 2015, 1, 15007.	30.5	427
52	Enabling research with human embryonic and fetal tissue resources. Development (Cambridge), 2015, 142, 3073-3076.	2.5	79
53	Cellular basis of neuroepithelial bending during mouse spinal neural tube closure. Developmental Biology, 2015, 404, 113-124.	2.0	64
54	Planar Cell Polarity Aligns Osteoblast Division in Response to Substrate Strain. Journal of Bone and Mineral Research, 2015, 30, 423-435.	2.8	23

#	Article	IF	CITATIONS
55	Interactions between planar cell polarity genes cause diverse neural tube defects. DMM Disease Models and Mechanisms, 2014, 7, 1153-63.	2.4	77
56	Vangl-dependent planar cell polarity signalling is not required for neural crest migration in mammals. Development (Cambridge), 2014, 141, 3153-3158.	2.5	32
57	Planar cell polarity and the kidney. Nephrology Dialysis Transplantation, 2014, 29, 1320-1326.	0.7	16
58	Neural Tube Defects. Annual Review of Neuroscience, 2014, 37, 221-242.	10.7	465
59	Neural tube defects—disorders of neurulation and related embryonic processes. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 213-227.	5.9	181
60	Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain. Molecular and Cellular Biochemistry, 2013, 378, 229-236.	3.1	28
61	Novel exomphalos genetic mouse model: The importance of accurate phenotypic classification. Journal of Pediatric Surgery, 2013, 48, 2036-2042.	1.6	8
62	Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Development (Cambridge), 2013, 140, 3008-3017.	2.5	37
63	Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurology, The, 2013, 12, 799-810.	10.2	549
64	Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. DMM Disease Models and Mechanisms, 2013, 6, 571-9.	2.4	63
65	Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice. DMM Disease Models and Mechanisms, 2013, 6, 562-6.	2.4	65
66	Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse. Brain, 2013, 136, 2836-2841.	7.6	25
67	Knowledge and periconceptional use of folic acid for the prevention of neural tube defects in ethnic communities in the United Kingdom: Systematic review and metaâ€analysis. Birth Defects Research Part A: Clinical and Molecular Teratology, 2013, 97, 444-451.	1.6	41
68	ls <i>LMNB1</i> a susceptibility gene for neural tube defects in humans?. Birth Defects Research Part A: Clinical and Molecular Teratology, 2013, 97, 398-402.	1.6	14
69	Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. DMM Disease Models and Mechanisms, 2013, 6, 1049-1049.	2.4	13
70	Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Journal of Cell Science, 2013, 126, e1-e1.	2.0	0
71	Lamin B1 Polymorphism Influences Morphology of the Nuclear Envelope, Cell Cycle Progression, and Risk of Neural Tube Defects in Mice. PLoS Genetics, 2012, 8, e1003059.	3.5	37
72	Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Human Molecular Genetics, 2012, 21, 1496-1503.	2.9	100

#	Article	IF	CITATIONS
73	Could microRNAs be biomarkers for neural tube defects?. Journal of Neurochemistry, 2012, 122, 485-486.	3.9	2
74	Epithelial fusion during neural tube morphogenesis. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012, 94, 817-823.	1.6	44
75	Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: Implications for regulation of BMP signalling. Developmental Dynamics, 2012, 241, 1808-1815.	1.8	2
76	Mutations in the planar cell polarity genes <i>CELSR1</i> and <i>SCRIB</i> are associated with the severe neural tube defect craniorachischisis. Human Mutation, 2012, 33, 440-447.	2.5	166
77	Convergent Extension Analysis in Mouse Whole Embryo Culture. Methods in Molecular Biology, 2012, 839, 133-146.	0.9	24
78	Quantitative analysis of myo-inositol in urine, blood and nutritional supplements by high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2759-2763.	2.3	42
79	Regional differences in the expression of laminin isoforms during mouse neural tube development. Matrix Biology, 2011, 30, 301-309.	3.6	23
80	Role of glycosaminoglycans in murine primary spinal neurulation. Developmental Biology, 2011, 356, 150-151.	2.0	0
81	Over-expression of Grhl2 causes spina bifida in the Axial defects mutant mouse. Human Molecular Genetics, 2011, 20, 1536-1546.	2.9	50
82	The genetic background of the <i>curly tail</i> strain confers susceptibility to folateâ€deficiencyâ€induced exencephaly. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 76-83.	1.6	31
83	Lack of motor neuron differentiation is an intrinsic property of the mouse secondary neural tube. Developmental Dynamics, 2010, 239, 3192-3203.	1.8	18
84	The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 633-652.	1.6	165
85	Neural tube defects induced by folate deficiency in mutant <i>curly tail</i> (<i>Grhl3</i>) embryos are associated with alteration in folate oneâ€carbon metabolism but are unlikely to result from diminished methylation. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 612-618.	1.6	22
86	Genetics and development of neural tube defects. Journal of Pathology, 2010, 220, 217-230.	4.5	391
87	Defining a PARticular Pathway of Neural Tube Closure. Developmental Cell, 2010, 18, 1-2.	7.0	11
88	Foregut separation and tracheo-oesophageal malformations: The role of tracheal outgrowth, dorso-ventral patterning and programmed cell death. Developmental Biology, 2010, 337, 351-362.	2.0	54
89	EphrinA-EphA receptor interactions in mouse spinal neurulation: implications for neural fold fusion. International Journal of Developmental Biology, 2009, 53, 559-568.	0.6	44
90	Apoptosis is not required for mammalian neural tube closure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8233-8238.	7.1	83

#	Article	IF	CITATIONS
91	Genetics of human neural tube defects. Human Molecular Genetics, 2009, 18, R113-R129.	2.9	267
92	Do cells become homeless during neural tube closure?. Cell Cycle, 2009, 8, 2479-2480.	2.6	9
93	Evaluation of folate metabolism gene polymorphisms as risk factors for open and closed neural tube defects. American Journal of Medical Genetics, Part A, 2009, 149A, 1585-1589.	1.2	23
94	Understanding the causes and prevention of neural tube defects: Insights from the <i>splotch</i> mouse model. Birth Defects Research Part A: Clinical and Molecular Teratology, 2009, 85, 322-330.	1.6	38
95	Development of the vertebrate central nervous system: formation of the neural tube. Prenatal Diagnosis, 2009, 29, 303-311.	2.3	158
96	Curly-tail mice with neural tube defects show abnormal cortical development. Cerebrospinal Fluid Research, 2009, 6, .	0.5	0
97	Embryology of oesophageal atresia. Seminars in Pediatric Surgery, 2009, 18, 2-11.	1.1	57
98	Grainyhead genes and mammalian neural tube closure. Birth Defects Research Part A: Clinical and Molecular Teratology, 2008, 82, 728-735.	1.6	39
99	Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function. Human Molecular Genetics, 2008, 17, 3675-3685.	2.9	99
100	Malformations. , 2008, , 335-479.		7
101	Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development (Cambridge), 2007, 134, 789-799.	2.5	284
102	The Meckel–Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Human Molecular Genetics, 2007, 16, 173-186.	2.9	245
103	Fetal spina bifida in a mouse model: loss of neural function in utero. Journal of Neurosurgery: Pediatrics, 2007, 106, 213-221.	1.3	52
104	Increased expression of Grainyhead-like-3 rescues spina bifida in a folate-resistant mouse model. Human Molecular Genetics, 2007, 16, 2640-2646.	2.9	73
105	Disruption of Planar Cell Polarity Signaling Results in Congenital Heart Defects and Cardiomyopathy Attributable to Early Cardiomyocyte Disorganization. Circulation Research, 2007, 101, 137-145.	4.5	109
106	Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development (Cambridge), 2007, 134, 3203-3211.	2.5	140
107	Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Letters, 2006, 580, 2803-2807.	2.8	47
108	Quantitative analysis of s-adenosylmethionine and s-adenosylhomocysteine in neurulation-stage mouse embryos by liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 844, 112-118.	2.3	34

#	Article	IF	CITATIONS
109	Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Research Part A: Clinical and Molecular Teratology, 2006, 76, 544-552.	1.6	87
110	Abnormal folate metabolism in foetuses affected by neural tube defects. Brain, 2006, 130, 1043-1049.	7.6	48
111	The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319 , a novel gene involved in neuronal migration. Human Molecular Genetics, 2006, 15, 1659-1666.	2.9	240
112	Neurulation in the cranial region $\hat{a} \in $ normal and abnormal. Journal of Anatomy, 2005, 207, 623-635.	1.5	139
113	Amniotic fluid brain-specific proteins are biomarkers for spinal cord injury in experimental myelomeningocele. Journal of Neurochemistry, 2005, 95, 594-598.	3.9	30
114	FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience, 2005, 6, 131-138.	10.2	472
115	Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genetics, 2005, 37, 1135-1140.	21.4	536
116	MRC–Wellcome Trust Human Developmental Biology Resource: enabling studies of human developmental gene expression. Trends in Genetics, 2005, 21, 586-590.	6.7	24
117	In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis, 2005, 43, 129-135.	1.6	218
118	Expression pattern of <i>glypicanâ€4</i> suggests multiple roles during mouse development. Developmental Dynamics, 2005, 233, 1013-1017.	1.8	37
119	Zic4, a zinc-finger transcription factor, is expressed in the developing mouse nervous system. Developmental Dynamics, 2005, 233, 1110-1115.	1.8	43
120	Analysis of the planar cell polarity geneVangl2and its co-expressed paralogueVangl1in neural tube defect patients. American Journal of Medical Genetics, Part A, 2005, 136A, 90-92.	1.2	47
121	Mouse models of neural tube defects: Investigating preventive mechanisms. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2005, 135C, 31-41.	1.6	101
122	Vangl2 Acts via RhoA Signaling to Regulate Polarized Cell Movements During Development of the Proximal Outflow Tract. Circulation Research, 2005, 96, 292-299.	4.5	166
123	Cardiac neural crest of the mouse embryo: axial level of origin,migratory pathway and cell autonomy of the <i>splotch</i> (<i>Sp2H</i>) mutant effect. Development (Cambridge), 2004, 131, 3367-3379.	2.5	54
124	Hyperglycaemia potentiates the teratogenicity of retinoic acid in diabetic pregnancy in mice. Diabetologia, 2004, 47, 515-522.	6.3	16
125	Spatiotemporal analysis of programmed cell death during mouse cardiac septation. The Anatomical Record, 2004, 277A, 355-369.	1.8	20
126	Multiple coexistent dysraphic pathologies. Child's Nervous System, 2003, 19, 376-379.	1.1	27

#	Article	IF	CITATIONS
127	Homocysteine is embryotoxic but does not cause neural tube defects in mouse embryos. Anatomy and Embryology, 2003, 206, 185-191.	1.5	56
128	Mutation of Celsr1 Disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse. Current Biology, 2003, 13, 1129-1133.	3.9	552
129	The genetic basis of mammalian neurulation. Nature Reviews Genetics, 2003, 4, 784-793.	16.3	608
130	Cordon-bleu is a conserved gene involved in neural tube formation. Developmental Biology, 2003, 262, 16-31.	2.0	86
131	Dishevelled: linking convergent extension with neural tube closure. Trends in Neurosciences, 2003, 26, 453-455.	8.6	56
132	Role of Sonic hedgehog in the development of the trachea and oesophagus. Journal of Pediatric Surgery, 2003, 38, 29-36.	1.6	69
133	Genomic organization and embryonic expression of igsf8, an immunoglobulin superfamily member implicated in development of the nervous system and organ epithelia. Molecular and Cellular Neurosciences, 2003, 22, 62-74.	2.2	10
134	Tethering of the spinal cord in mouse fetuses and neonates with spina bifida. Journal of Neurosurgery: Spine, 2003, 99, 206-213.	1.7	20
135	Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol. Human Molecular Genetics, 2003, 13, 7-14.	2.9	53
136	Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Human Molecular Genetics, 2003, 12, 87-98.	2.9	266
137	FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 2003, 126, 2455-2462.	7.6	313
138	Tracking Down the Migration of Mouse Neural Crest Cells. Neuroembryology, 2003, 2, 9-17.	1.1	6
139	Differential Protein Expression at the Stage of Neural Tube Closure in the Mouse Embryo. Journal of Biological Chemistry, 2002, 277, 41645-41651.	3.4	32
140	Maternal Diabetes Increases the Risk of Caudal Regression Caused by Retinoic Acid. Diabetes, 2002, 51, 2811-2816.	0.6	74
141	Folic acid prevents exencephaly in Cited2 deficient mice. Human Molecular Genetics, 2002, 11, 283-293.	2.9	145
142	D-chiro-inositol is more effective than myo-inositol in preventing folate-resistant mouse neural tube defects. Human Reproduction, 2002, 17, 2451-2458.	0.9	52
143	Cloning and Characterization of Igsf9 in Mouse and Human: A New Member of the Immunoglobulin Superfamily Expressed in the Developing Nervous System. Genomics, 2002, 79, 663-670.	2.9	27
144	Blocking Endogenous FGF-2 Activity Prevents Cranial Osteogenesis. Developmental Biology, 2002, 243, 99-114.	2.0	49

#	Article	IF	CITATIONS
145	Multiple developmental roles of Ahnak are suggested by localization to sites of placentation and neural plate fusion in the mouse conceptus. Mechanisms of Development, 2002, 119, S31-S38.	1.7	14
146	Dorsoventral patterning in oesophageal atresia with tracheo-oesophageal fistula: Evidence from a new mouse model. Journal of Pediatric Surgery, 2002, 37, 185-191.	1.6	55
147	Induction of chondrogenesis in neural crest cells by mutant fibroblast growth factor receptors. Developmental Dynamics, 2002, 224, 210-221.	1.8	26
148	Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development (Cambridge), 2002, 129, 2507-2517.	2.5	145
149	Heparan sulphate proteoglycans and spinal neurulation in the mouse embryo. Development (Cambridge), 2002, 129, 2109-2119.	2.5	31
150	Heparan sulphate proteoglycans and spinal neurulation in the mouse embryo. Development (Cambridge), 2002, 129, 2109-19.	2.5	10
151	Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development (Cambridge), 2002, 129, 2507-17.	2.5	68
152	Comparative Physical and Transcript Maps of â^¼1 Mb around loop-tail, a Gene for Severe Neural Tube Defects on Distal Mouse Chromosome 1 and Human Chromosome 1q22–q23. Genomics, 2001, 72, 180-192.	2.9	13
153	Circletail, a New Mouse Mutant with Severe Neural Tube Defects: Chromosomal Localization and Interaction with the Loop-Tail Mutation. Genomics, 2001, 78, 55-63.	2.9	89
154	Curly tail: a 50-year history of the mouse spina bifida model. Anatomy and Embryology, 2001, 203, 225-238.	1.5	106
155	Cardiovascular Defects Associated With Abnormalities in Midline Development in the <i>Loop-tail</i> Mouse Mutant. Circulation Research, 2001, 89, 6-12.	4.5	72
156	FGF2 promotes skeletogenic differentiation of cranial neural crest cells. Development (Cambridge), 2001, 128, 2143-2152.	2.5	85
157	CLN-1 and CLN-5, genes for infantile and variant late infantile neuronal ceroid lipofuscinoses, are expressed in the embryonic human brain. Journal of Comparative Neurology, 2000, 426, 406-412.	1.6	29
158	Retinal axon misrouting at the optic chiasm in mice with neural tube closure defects. Genesis, 2000, 27, 32-47.	1.6	31
159	Neural tube defects : Prevention by folic acid and other vitamins. Indian Journal of Pediatrics, 2000, 67, 915-921.	0.8	12
160	Neurulation and Neural Tube Closure Defects. , 2000, 136, 135-160.		37
161	RhoB is expressed in migrating neural crest and endocardial cushions of the developing mouse embryo. Mechanisms of Development, 2000, 95, 211-214.	1.7	31
162	Neuronal migration disorders in humans and in mouse models—an overview. Epilepsy Research, 1999, 36, 133-141.	1.6	52

#	Article	IF	CITATIONS
163	Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments. Developmental Dynamics, 1999, 215, 273-283.	1.8	97
164	Sequence and expression analysis ofNhlh1: a basic helix-loop-helix gene implicated in neurogenesis. Genesis, 1999, 24, 165-177.	2.1	29
165	Retinoic acid induces down-regulation of Wnt-3a, apoptosis and diversion of tail bud cells to a neural fate in the mouse embryo. Mechanisms of Development, 1999, 84, 17-30.	1.7	89
166	Physical and Transcriptional Map of a 3-Mb Region of Mouse Chromosome 1 Containing the Gene for the Neural Tube Defect Mutantloop-tail(Lp). Genomics, 1999, 56, 149-159.	2.9	14
167	Rib Truncations and Fusions in the Sp2HMouse Reveal a Role for Pax3 in Specification of the Ventro-lateral and Posterior Parts of the Somite. Developmental Biology, 1999, 209, 143-158.	2.0	73
168	Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments. , 1999, 215, 273.		3
169	Sequence and expression analysis of Nhlh1: a basic helixâ€loopâ€helix gene implicated in neurogenesis. Genesis, 1999, 24, 165-177.	2.1	1
170	Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Developmental Brain Research, 1998, 109, 245-253.	1.7	65
171	Embryonic mechanisms underlying the prevention of neural tube defects by vitamins. Mental Retardation and Developmental Disabilities Research Reviews, 1998, 4, 264-268.	3.6	5
172	Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mechanisms of Development, 1998, 73, 59-72.	1.7	143
173	Embryonic Folate Metabolism and Mouse Neural Tube Defects. Science, 1998, 280, 2107-2109.	12.6	230
174	Peter Thorogood (1947–1998). Developmental Biology, 1998, 204, 1-2.	2.0	0
175	ParalogousSm22α (Tagln) Genes Map to Mouse Chromosomes 1 and 9: Further Evidence for a Paralogous Relationship. Genomics, 1998, 51, 144-147.	2.9	26
176	Versican Expression Is Associated With Chamber Specification, Septation, and Valvulogenesis in the Developing Mouse Heart. Circulation Research, 1998, 83, 523-532.	4.5	104
177	Prevention of neural tube defects: vitamins, enzymes and genes. Current Opinion in Neurology, 1998, 11, 97-102.	3.6	33
178	Neural Crest is Involved in Development of Abnormal Myocardial Function. Journal of Molecular and Cellular Cardiology, 1997, 29, 2675-2685.	1.9	77
179	Over-expression of the chondroitin sulphate proteoglycan versican is associated with defective neural crest migration in the Pax3 mutant mouse (splotch). Mechanisms of Development, 1997, 69, 39-51.	1.7	92
180	Molecular analysis of Loop-tail, a mouse model of craniorachischisis. Genetical Research, 1997, 70, 79-89.	0.9	0

#	Article	IF	CITATIONS
181	The role of the extracellular matrix in neural crest cell migration in the Splotch2H mouse. Genetical Research, 1997, 70, 79-89.	0.9	0
182	Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse. Cardiovascular Research, 1997, 36, 163-173.	3.8	126
183	Inositol prevents folate-resistant neural tube defects in the mouse. Nature Medicine, 1997, 3, 60-66.	30.7	204
184	Failure of neural tube closure in the loop-tail (Lp) mutant mouse: analysis of the embryonic mechanism. Developmental Brain Research, 1997, 102, 217-224.	1.7	30
185	Localization of the mouse gene encoding tyrosine kinase receptor type 10 on distal Chromosome 1. Mammalian Genome, 1997, 8, 941-942.	2.2	1
186	Role of the extracellular matrix in neural crest cell migration. Journal of Anatomy, 1997, 191, 507-515.	1.5	63
187	Mechanisms of normal and abnormal neurulation: evidence from embryo culture studies. International Journal of Developmental Biology, 1997, 41, 199-212.	0.6	23
188	Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anatomy and Embryology, 1996, 194, 65-73.	1.5	106
189	Split cervical spinal cord with Klippel—Feil syndrome: seven cases. Brain, 1996, 119, 1859-1872.	7.6	59
190	Transferrin and its receptor in the development of genetically determined neural tube defects in the mouse embryo. Developmental Dynamics, 1996, 207, 35-46.	1.8	10
191	Neural tube closure in the chick embryo is multiphasic. , 1996, 207, 309-318.		51
192	Relationship between altered axial curvature and neural tube closure in normal and mutant (curly) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
193	Death before birth: clues from gene knockouts and mutations. Trends in Genetics, 1995, 11, 87-93.	6.7	351
194	A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nature Genetics, 1995, 11, 93-95.	21.4	150
195	Genetic basis of neural tube defects: the mouse gene loop-tail maps to a region of chromosome 1 syntenic with human 1q21–q23. Genomics, 1995, 26, 473-478.	2.9	30
196	A Curly-Tail Modifier Locus,mct1,on Mouse Chromosome 17. Genomics, 1995, 29, 719-724.	2.9	61
197	Prevention of spinal neural tube defects in the curly tail mouse mutant by a specific effect of retinoic acid. Developmental Dynamics, 1994, 199, 93-102.	1.8	45
198	Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice. Nature Genetics, 1994, 6, 357-362.	21.4	119

#	Article	IF	CITATIONS
199	Developmental Basis of Severe Neural Tube Defects in the loop-tail (Lp) Mutant Mouse: Use of Microsatellite DNA Markers to Identify Embryonic Genotype. Developmental Biology, 1994, 165, 20-29.	2.0	71
200	Etiology and pathogenesis of human neural tube defects. Current Opinion in Pediatrics, 1994, 6, 624-631.	2.0	69
201	Genetic Models of Mammalian Neural Tube Defects. Novartis Foundation Symposium, 1994, 181, 118-143.	1.1	22
202	Neural tube defects. Trends in Neurosciences, 1993, 16, 381-383.	8.6	27
203	Analysis of neural tube defects in a mouse mutant using whole embryo culture. Toxicology in Vitro, 1993, 7, 679-684.	2.4	1
204	Exogenous transferrin is taken up and localized by the neurulation-stage mouse embryo in vitro. Developmental Biology, 1992, 153, 312-323.	2.0	16
205	Deceleration and acceleration in the rate of posterior neuropore closure during neurulation in the curly tail (ct) mouse embryo. Anatomy and Embryology, 1992, 185, 169-74.	1.5	18
206	The embryonic development of mammalian neural tube defects. Progress in Neurobiology, 1990, 35, 363-403.	5.7	322
207	Glycosaminoglycans vary in accumulation along the neuraxis during spinal neurulation in the mouse embryo. Developmental Biology, 1988, 130, 573-582.	2.0	31
208	Accumulation of basement membrane-associated hyaluronate is reduced in the posterior neuropore region of mutant (curly tail) mouse embryos developing spinal neural tube defects. Developmental Biology, 1988, 130, 583-590.	2.0	61
209	Role of the polar trophectoderm in determining the pattern of early post-implantation morphogenesis in mammals: Evidence from development of the shorttailed field vole, Microtus agrestis. Placenta, 1988, 9, 643-653.	1.5	7
210	Covergowns and the Control of Operating Room Contamination. Nursing Research, 1986, 35, 263???268.	1.7	34
211	Animal Models of Folate-Related Neural Tube Defects. , 0, , 001-026.		1
212	Uses of Databases in Dysmorphology. , 0, , 19-31.		0
213	Transgenic Technology and Its Role in Understanding Normal and Abnormal Mammalian Development. , 0, , 79-97.		0