Mikhail A Syroeshkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/361253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly soluble germanium dioxide as a new source of germanium for derivatization with organic compounds. Mendeleev Communications, 2022, 32, 25-27.	1.6	3
2	1,1'-Diphenyl-bis(silatrane) as the First Structurally Characterized bis(silatrane). Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 69-74.	1.0	1
3	Remote Stereoelectronic Effects in Pyrrolidone- and Caprolactam-Substituted Phenols: Discrepancies in Antioxidant Properties Evaluated by Electrochemical Oxidation and H-Atom Transfer Reactivity. Journal of Organic Chemistry, 2022, 87, 5371-5384.	3.2	4
4	Synthesis and redox properties of imidazol-2-yl-substituted nitronyl nitroxides. Russian Chemical Bulletin, 2022, 71, 722-734.	1.5	5
5	Au–Au Chemical Bonding in Nitronyl Nitroxide Gold(I) Derivatives. Organometallics, 2022, 41, 1710-1720.	2.3	2
6	Supramolecular D⋯A-layered structures based on germanium complexes with 2,3-dihydroxynaphthalene and <i>N</i> , <i>N</i> ′-bidentate ligands. RSC Advances, 2021, 11, 21527-21536.	3.6	10
7	Re(i)-nitroxide complexes. RSC Advances, 2021, 11, 19902-19907.	3.6	2
8	Interaction of SiCl2 with CO2 in Ar matrices. Mendeleev Communications, 2021, 31, 149-153.	1.6	4
9	Search for tetrylene structures that can exhibit catalytic activity: a quantum chemical approach. Russian Chemical Bulletin, 2021, 70, 1075-1079.	1.5	4
10	The Redox Properties of Germylenes Stabilized by Nâ€Đonor Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 2755-2763.	2.0	5
11	Nonclassical complex of dichlorosilylene with CO: direct spectroscopic detection. Russian Chemical Bulletin, 2021, 70, 1084-1092.	1.5	2
12	Electrochemical Etching of Germanium in Ionic Liquids without the Use of Toxic and Corrosive Reagents. ChemNanoMat, 2021, 7, 1355-1360.	2.8	1
13	Novel organic magnet derived from pyrazine-fused furazans. Mendeleev Communications, 2021, 31, 784-788.	1.6	12
14	An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chemistry, 2020, 22, 359-367.	9.0	27
15	Synthesis, characterization and redox properties of Ar–C=N→Geâ†N=C–Ar containing system. Mendeleev Communications, 2020, 30, 563-566.	1.6	7
16	Electroreductive heterocyclization of ortho-piperidino substituted nitro(het)arenes. Mendeleev Communications, 2020, 30, 633-635.	1.6	4
17	1,1′-Diphenyl-bis-germatrane with persistent radical cation. Mendeleev Communications, 2020, 30, 567-568.	1.6	5
18	Porous Silicon Preparation by Electrochemical Etching in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2020, 8, 10259-10264.	6.7	14

MIKHAIL A SYROESHKIN

#	Article	IF	CITATIONS
19	Electroreduction of Derivatives of N,N'-Dioxides of Phenazine and Quinoxaline in Nonaqueous Media and in the Presence of Proton Donors of Medium Strength. Russian Journal of Electrochemistry, 2020, 56, 388-395.	0.9	0
20	2â€Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Liâ€lon Batteries. ChemSusChem, 2020, 13, 3137-3146.	6.8	14
21	Chemistry of diazadiene type ligands with extra coordination groups. Prospects of reactivity. Coordination Chemistry Reviews, 2020, 417, 213353.	18.8	26
22	Hochkonversion von Reduktionsmitteln. Angewandte Chemie, 2019, 131, 5588-5607.	2.0	14
23	Upconversion of Reductants. Angewandte Chemie - International Edition, 2019, 58, 5532-5550.	13.8	61
24	Easily electroreducible halogen-free germanium complexes with biologically active pyridines. Inorganica Chimica Acta, 2019, 495, 119007.	2.4	15
25	A simple and convenient method for synthesizing dipyrido[1,2-a :1′,2′-a′]benzo[1,2-d:5,4-d]diimidazole-6,13-dione. Mendeleev Communications, 2019, 29, 184-186.	1.6	3
26	Antioxidant Properties of Adrenaline in the Presence of Geâ€132. European Journal of Organic Chemistry, 2019, 2019, 4128-4132.	2.4	5
27	Germanium Dioxide and the Antioxidant Properties of Catechols. European Journal of Inorganic Chemistry, 2019, 2019, 676-681.	2.0	15
28	Novel Peroxides as Promising Anticancer Agents with Unexpected Depressed Antimalarial Activity. ChemMedChem, 2018, 13, 902-908.	3.2	44
29	Iminoxyl radicalsvs. tert-butylperoxyl radical in competitive oxidative C–O coupling with β-dicarbonyl compounds. Oxime ether formation prevails over Kharasch peroxidation. RSC Advances, 2018, 8, 5670-5677.	3.6	16
30	Assessing Ge-132 as an antioxidant in organic and water-containing media. Journal of Organometallic Chemistry, 2018, 858, 8-13.	1.8	14
31	Halogen-free GeO ₂ conversion: electrochemical reduction <i>vs.</i> complexation in (DTBC) ₂ Ge[Py(CN) _n] (<i>n</i> = 0…2) complexes. Dalton Transactions, 2018, 47, 17127-17133.	3.3	26
32	Five Roads That Converge at the Cyclic Peroxy-Criegee Intermediates: BF ₃ -Catalyzed Synthesis of β-Hydroperoxy-β-peroxylactones. Journal of Organic Chemistry, 2018, 83, 13427-13445.	3.2	20
33	Organoelement chemistry: promising growth areas and challenges. Russian Chemical Reviews, 2018, 87, 393-507.	6.5	157
34	Covalent grafting of fluoride-encapsulating silsesquioxane Fâ^'@Ph8T8 onto glassy carbon. Electrochemistry Communications, 2018, 95, 5-8.	4.7	2
35	Hypervalent iodine compounds for anti-Markovnikov-type iodo-oxyimidation of vinylarenes. Beilstein Journal of Organic Chemistry, 2018, 14, 2146-2155.	2.2	18
36	Electroreduction mechanism of N-phenylhydroxylamines in aprotic solvents: N-(2-nitrophenyl)- and N-(3-nitrophenyl)hydroxylamines. Electrochimica Acta, 2017, 238, 9-20.	5.2	6

#	Article	IF	CITATIONS
37	Electrosynthesis of vinyl sulfones from alkenes and sulfonyl hydrazides mediated by KI: Ðn electrochemical mechanistic study. Tetrahedron, 2017, 73, 6871-6879.	1.9	52
38	Electroreduction mechanism of N-phenylhydroxylamines in aprotic solvents: formation of hydrogen bonds between N-(3-nitrophenyl)hydroxylamine and its radical anion. Russian Chemical Bulletin, 2017, 66, 479-482.	1.5	1
39	Influence of the nature of solvent and substituents on the oxidation potential of 2,2,6,6-tetramethylpiperidine 1-oxyl derivatives. Russian Chemical Bulletin, 2017, 66, 683-689.	1.5	12
40	Electrochemical behavior of <i>N</i> â€oxyphthalimides: Cascades initiating selfâ€sustaining catalytic reductive <i>N</i> ― <i>O</i> bond cleavage. Journal of Physical Organic Chemistry, 2017, 30, e3744.	1.9	40
41	Cyclic peroxides as promising anticancer agents: in vitro cytotoxicity study of synthetic ozonides and tetraoxanes on human prostate cancer cell lines. Medicinal Chemistry Research, 2017, 26, 170-179.	2.4	39
42	Bond cleavage in hydroxyl derivatives initiated by electron transfer: electroreduction of 9 H ,9 'H -bifluorene-9,9 '- diol. Mendeleev Communications, 2017, 27, 580-582.	1.6	8
43	Electrochemical synthesis of sulfonamides from arenesulfonohydrazides or sodium p-methylbenzenesulfinate and amines. Mendeleev Communications, 2016, 26, 538-539.	1.6	22
44	Copper(i)-mediated synthesis of β-hydroxysulfones from styrenes and sulfonylhydrazides: an electrochemical mechanistic study. RSC Advances, 2016, 6, 93476-93485.	3.6	31
45	Electrochemical reduction of N-(2-nitro-4-R-phenyl)pyridinium salts using redox-mediators. Russian Chemical Bulletin, 2016, 65, 209-214.	1.5	3
46	Ðj-ОЕbond cleavage initiated by electron transfer: electroreduction of 9-fluorenol. Electrochimica Acta, 2016, 191, 962-973.	5.2	19
47	Kinetics and thermodynamics of reversible disproportionation–comproportionation in redox triad oxoammonium cations – nitroxyl radicals – hydroxylamines. Journal of Physical Organic Chemistry, 2015, 28, 17-24.	1.9	40
48	Efficient electrochemical synthesis of pyrido[1,2-a]benzimidazoles. Russian Chemical Bulletin, 2014, 63, 372-380.	1.5	11
49	Electroreduction mechanism of N-arylhydroxylamines in aprotic solvents: N-(4-nitrophenyl)hydroxylamine. Journal of Electroanalytical Chemistry, 2014, 728, 60-65.	3.8	14
50	Mechanism of electroreduction of the Henry reaction products. Electrochemically initiated degradation of 1-phenyl-2-nitroethanol. Acta Chimica Slovenica, 2014, 61, 246-54.	0.6	4
51	Octaorgano Silsesquioxanes with Encapsulated Fluoride Anion, TBA(F-@T8),as a New Class of Non-Coordinating Non-Nucleophilic Supporting Electrolytes. ECS Transactions, 2013, 45, 29-38.	0.5	4
52	Unusual pK 1/pK 2 ratio for formation of 9-fluorenone π*-dianion from 9-fluorenol. Russian Chemical Bulletin, 2013, 62, 1668-1670.	1.5	6
53	Synthesis of Pyrido[1,2-a]benzimidazoles by Electroreductive Heterocyclization of 1-(2-nitroaryl)pyridinium Chlorides. Mendeleev Communications, 2012, 22, 312-313.	1.6	9
54	Dimerization and protonation reactions of nitrosonitrobenzenes radical anions. Russian Journal of Electrochemistry, 2011, 47, 1205-1210.	0.9	3

MIKHAIL A SYROESHKIN

#	Article	IF	CITATIONS
55	Electrochemically initiated transformation of 4-nitrophenylhydroxylamine into 4,4′-dinitroazobenzene. Mendeleev Communications, 2011, 21, 26-28.	1.6	8
56	Integrated Study of the Dinitrobenzene Electroreduction Mechanism by Electroanalytical and Computational Methods. International Journal of Electrochemistry, 2011, 2011, 1-12.	2.4	13
57	Reactivity indices as a measure of rate constants for protonation of radical anions and dianions. Russian Chemical Bulletin, 2010, 59, 2068-2071.	1.5	4
58	On the multiplicity of cathodically generated dianions of dinitrobenzenes. Russian Chemical Bulletin, 2009, 58, 41-46.	1.5	14
59	First synthesis of 1,5-diazabicyclo[3.1.0]hexane complexes with cadmium salts. Russian Chemical Bulletin, 2009, 58, 1002-1006.	1.5	3
60	The nature of associates of 1,4-dinitrobenzene dianion with 1-butyl-3-methylimidazolium and 1-butyl-2,3-dimethylimidazolium cations. Russian Chemical Bulletin, 2009, 58, 1688-1693.	1.5	8
61	Kinetics of protonation of the 1,2-dinitrobenzene radical anion and dianion by phenol. Russian Chemical Bulletin, 2009, 58, 468-472.	1.5	4
62	Kinetics of the 1,3-dinitrobenzene dianion protonation with 1-butyl-3-methylimidazolium cations. Mendeleev Communications, 2009, 19, 96-98.	1.6	4
63	Self-protonation upon the electroreduction of 2- and 4-nitrophenylhydroxylamines in aprotic media. Mendeleev Communications, 2009, 19, 258-259.	1.6	6
64	Protonation of 1,3- and 1,4-dinitrobenzene dianions. Russian Chemical Bulletin, 2008, 57, 1492-1495.	1.5	7
65	Reaction of wheat-straw structural components with a nitrating mixture containing trifluoroacetic acid. Chemistry of Natural Compounds, 2006, 42, 592-595.	0.8	0
66	O,N-Heterocyclic germylenes as efficient catalysts for hydroboration and cyanosilylation of benzaldehyde. New Journal of Chemistry, 0, , .	2.8	19