
Hongkun Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3612443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing the Charge Transport of P(NDI2OD-T2) by Improving the Polarization of the NDI2OD Unit along the Backbone Direction and Preaggregation via H-Bonding. Macromolecules, 2022, 55, 2497-2508.	4.8	15
2	Highâ€Performance Red Quantumâ€Dot Lightâ€Emitting Diodes Based on Organic Electron Transporting Layer. Advanced Functional Materials, 2021, 31, 2007686.	14.9	32
3	Isomers of Bâ†Nâ€Fused Dibenzoâ€azaacenes: How Bâ†N Affects Optoâ€electronic Properties and Device Behaviors?. Chemistry - A European Journal, 2021, 27, 4364-4372.	3.3	22
4	Orange-red thermally activated delay fluorescence emitters based on asymmetric difluoroboron chelated enaminone: Impact of donor position on luminescent properties. Dyes and Pigments, 2021, 184, 108810.	3.7	15
5	Bâ†Nâ€Incorporated Dibenzoâ€azaacene with Selective Nearâ€Infrared Absorption and Visible Transparency. Chemistry - A European Journal, 2021, 27, 2065-2071.	3.3	12
6	Highly efficient solution-processed thermally activated delayed fluorescence emitter based on a fused difluoroboron ketoiminate acceptor: C/N switch to realize the effective modulation of luminescence behavior. Journal of Materials Chemistry C, 2021, 9, 14133-14138.	5.5	9
7	Novel boron- and sulfur-doped polycyclic aromatic hydrocarbon as multiple resonance emitter for ultrapure blue thermally activated delayed fluorescence polymers. Science China Chemistry, 2021, 64, 547-551.	8.2	76
8	Sterically‣ocked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2021, 133, 9721-9727.	2.0	14
9	Sterically‣ocked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2021, 60, 9635-9641.	13.8	61
10	π‧tacked Donor–Acceptor Dendrimers for Highly Efficient White Electroluminescence. Angewandte Chemie, 2021, 133, 16721-16729.	2.0	7
11	π‧tacked Donor–Acceptor Dendrimers for Highly Efficient White Electroluminescence. Angewandte Chemie - International Edition, 2021, 60, 16585-16593.	13.8	49
12	Crystallization Control of N,Nâ€2-Dioctyl Perylene Diimide by Amphiphilic Block Copolymers Containing poly(3-Hexylthiophene) and Polyethylene Glycol. Frontiers in Chemistry, 2021, 9, 699387.	3.6	1
13	Bâ†N-Incorporated Dibenzo-azaacenes as n-Type Thermoelectric Materials. ACS Applied Materials & Interfaces, 2021, 13, 33321-33327.	8.0	15
14	Unusual design strategy for a stable and soluble high-molecular-weight copper(<scp>i</scp>) arylacetylide polymer. Chemical Communications, 2021, 57, 12004-12007.	4.1	1
15	Optimizing the Crystallization Behavior and Film Morphology of Donor–Acceptor Conjugated Semiconducting Polymers by Side-Chain–Solvent Interaction in Nonpolar Solvents. Macromolecules, 2021, 54, 10557-10573.	4.8	30
16	Indenofluorene- and carbazole-based copolymers for blue PLEDs with simultaneous high efficiency and good color purity. Journal of Materials Chemistry C, 2020, 8, 14819-14825.	5.5	6
17	Polymerization-induced photothermy: A non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles. Biomaterials, 2020, 255, 120179.	11.4	25
18	Electronic properties modulation of tetraoxidothieno[3,2- <i>b</i>]thiophene-based quinoidal compounds by terminal fluorination. Materials Chemistry Frontiers, 2020, 4, 891-898.	5.9	10

Hongkun Tian

#	Article	IF	CITATIONS
19	Solid-State Fluorescence Enhancement of Bromine-Substituted Trans-Enaminone Derivatives. Organic Materials, 2020, 02, 033-040.	2.0	8
20	Triazatruxene-based thermally activated delayed fluorescence small molecules with aggregation-induced emission properties for solution-processable nondoped OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 9719-9725.	5.5	26
21	Microscale Organic Transistors: Fully Integrated Microscale Quasiâ€2D Crystalline Molecular Fieldâ€Effect Transistors (Adv. Funct. Mater. 36/2019). Advanced Functional Materials, 2019, 29, 1970250.	14.9	1
22	Fully Integrated Microscale Quasiâ€2D Crystalline Molecular Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1903738.	14.9	11
23	Water-soluble pH neutral triazatruxene-based small molecules as hole injection materials for solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 7900-7905.	5.5	5
24	Five-ring-fused asymmetric thienoacenes for high mobility organic thin-film transistors: the influence of the position of the S atom in the terminal thiophene ring. Journal of Materials Chemistry C, 2019, 7, 3656-3664.	5.5	29
25	Aggregationâ€Induced Emission of Highly Planar Enaminone Derivatives: Unexpected Fluorescence Enhancement by Bromine Substitution. Advanced Optical Materials, 2019, 7, 1801719.	7.3	19
26	Diketopyrrolopyrrole-based small molecules for solution-processed n-channel organic thin film transistors. Journal of Materials Chemistry C, 2019, 7, 13939-13946.	5.5	21
27	Wide bandgap donor-acceptor conjugated polymers with alkylthiophene as side chains for high-performance non-fullerene polymer solar cells. Organic Electronics, 2019, 65, 31-38.	2.6	8
28	Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 15943-15951.	8.0	35
29	Fused Isoindigo Ribbons with Absorption Bands Reaching Nearâ€infrared. Angewandte Chemie - International Edition, 2018, 57, 10283-10287.	13.8	31
30	nâ€Type Azaacenes Containing Bâ†N Units. Angewandte Chemie - International Edition, 2018, 57, 2000-2004.	13.8	82
31	nâ€Type Azaacenes Containing Bâ†N Units. Angewandte Chemie, 2018, 130, 2018-2022.	2.0	18
32	Fused Isoindigo Ribbons with Absorption Bands Reaching Nearâ€infrared. Angewandte Chemie, 2018, 130, 10440-10444.	2.0	10
33	Near-infrared absorbing non-fullerene acceptors with selenophene as π bridges for efficient organic solar cells. Journal of Materials Chemistry A, 2018, 6, 8059-8067.	10.3	92
34	Asymmetric conjugated oligomers based on polycyclic aromatics as high mobility semiconductors: The influence of chalcogens. Organic Electronics, 2018, 57, 359-366.	2.6	6
35	High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation: Influence of Thiophene Moieties and Side Chains. Macromolecules, 2018, 51, 8752-8760.	4.8	56
36	Donor–Acceptor Conjugated Polymers Based on Bisisoindigo: Energy Level Modulation toward Unipolar n-Type Semiconductors. Macromolecules, 2018, 51, 8652-8661.	4.8	36

Hongkun Tian

#	Article	IF	CITATIONS
37	Diketopyrrolopyrroleâ€Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation for High Mobility Pure nâ€Channel Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1801097.	14.9	92
38	Multifluorination toward Highâ€Mobility Ambipolar and Unipolar nâ€Type Donor–Acceptor Conjugated Polymers Based on Isoindigo. Advanced Materials, 2017, 29, 1606217.	21.0	172
39	Asymmetric Conjugated Molecules Based on [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene for High-Mobility Organic Thin-Film Transistors: Influence of Alkyl Chain Length. ACS Applied Materials & Interfaces, 2017, 9, 35427-35436.	8.0	65
40	A difluorobenzothiadiazole-based conjugated polymer with alkylthiophene as the side chains for efficient, additive-free and thick-film polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 20473-20481.	10.3	20
41	Donor–acceptor conjugated polymers based on two-dimensional thiophene derivatives for bulk heterojunction solar cells. Polymer Chemistry, 2017, 8, 421-430.	3.9	19
42	Synthesis and Characterization of Isoindigo[7,6- <i>g</i>]isoindigo-Based Donor–Acceptor Conjugated Polymers. Macromolecules, 2016, 49, 2135-2144.	4.8	64
43	High Mobility Ambipolar Diketopyrrolopyrroleâ€Based Conjugated Polymer Synthesized Via Direct Arylation Polycondensation. Advanced Materials, 2015, 27, 6753-6759.	21.0	187
44	Isoindigo-based low bandgap conjugated polymer for o-xylene processed efficient polymer solar cells with thick active layers. Journal of Materials Chemistry A, 2015, 3, 19928-19935.	10.3	19
45	Donor–acceptor–donor conjugated oligomers based on isoindigo and anthra[1,2-b]thieno[2,3-d]thiophene for organic thin-film transistors: the effect of the alkyl side chain length on semiconducting properties. Journal of Materials Chemistry C, 2015, 3, 7567-7574.	5.5	15
46	Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by indenothiophene and benzoindenothiophene derivatives. Journal of Materials Chemistry C, 2015, 3, 11135-11143.	5.5	8
47	Low bandgap conjugated polymers based on mono-fluorinated isoindigo for efficient bulk heterojunction polymer solar cells processed with non-chlorinated solvents. Energy and Environmental Science, 2015, 8, 585-591.	30.8	70
48	Benzothienobenzothiophene-Based Conjugated Oligomers as Semiconductors for Stable Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2014, 6, 5255-5262.	8.0	17
49	Donor–spacer–acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. Journal of Materials Chemistry A, 2014, 2, 3632.	10.3	40
50	Synthesis and characterization of oligo(2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene)s: effect of the chain length and end-groups on their optical and charge transport properties. Journal of Materials Chemistry C, 2014, 2, 9978-9986.	5.5	7
51	High ON/OFF ratio single crystal transistors based on ultrathin thienoacene microplates. Journal of Materials Chemistry C, 2014, 2, 5382-5388.	5.5	24
52	Suzuki–Miyaura catalyst-transfer polycondensation with Pd(IPr)(OAc) ₂ as the catalyst for the controlled synthesis of polyfluorenes and polythiophenes. Polymer Chemistry, 2014, 5, 7072-7080.	3.9	50
53	Highly efficient tandem white organic light-emitting diodes based upon C60/NaT4 organic heterojunction as charge generation layer. Journal of Materials Chemistry, 2012, 22, 8492.	6.7	29
54	An asymmetric oligomer based on thienoacene for solution processed crystal organic thin-film transistors. Chemical Communications, 2012, 48, 3557.	4.1	44

Ηοησκώη Τιάη

#	Article	IF	CITATIONS
55	Crystalline Organic Heterostructures Engineering Based on Vanadyl Phthalocyanine and Rodâ€Like Conjugated Organic Semiconductors with Selected Central Groups. Advanced Functional Materials, 2012, 22, 4598-4607.	14.9	23
56	Organic heterojunctions as a charge generation layer in tandem organic light-emitting diodes: the effect of interfacial energy level and charge carrier mobility. Journal of Materials Chemistry, 2011, 21, 15332.	6.7	38
57	Novel liquid crystalline conjugated oligomers based on phenanthrene for organic thin film transistors. Journal of Materials Chemistry, 2011, 21, 14793.	6.7	2
58	Alkyl substituted [6,6]-thienyl-C61-butyric acid methyl esters: easily accessible acceptor materials for bulk-heterojunction polymer solar cells. Journal of Materials Chemistry, 2010, 20, 3092.	6.7	26
59	A feasibly synthesized ladder-type conjugated molecule as the novel high mobility n-type organic semiconductor. Journal of Materials Chemistry, 2010, 20, 7998.	6.7	41
60	Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. Journal of Materials Chemistry, 2009, 19, 2199.	6.7	189
61	Crystal Packing Motifs of Oligothiophenes End-Capped with N-Containing Aryls. Crystal Growth and Design, 2008, 8, 2352-2358.	3.0	8
62	Novel highly stable semiconductors based on phenanthrene for organic field-effect transistors. Chemical Communications, 2006, , 3498.	4.1	42
63	Novel thiophene-aryl co-oligomers for organic thin film transistors. Journal of Materials Chemistry, 2005, 15, 3026.	6.7	66
64	Incorporating Cyano Groups to a Conjugated Polymer Based on Double Bâ†N Bridged Bipyridine Unit for Unipolar n-Type Organic Field-Effect Transistors. Organic Materials, 0, 3, .	2.0	5