
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3612303/publications.pdf Version: 2024-02-01

LOSE M ESTDELA

#	Article	IF	CITATIONS
1	Combination of natural polyphenols with a precursor of NAD+ and a TLR2/6 ligand lipopeptide protects mice against lethal \hat{I}^3 radiation. Journal of Advanced Research, 2022, , .	9.5	4
2	Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants, 2022, 11, 1098.	5.1	19
3	Nicotinamide Riboside and Pterostilbene Cooperatively Delay Motor Neuron Failure in ALS SOD1G93A Mice. Molecular Neurobiology, 2021, 58, 1345-1371.	4.0	24
4	Pterostilbene in Cancer Therapy. Antioxidants, 2021, 10, 492.	5.1	51
5	The Link between Oxidative Stress, Redox Status, Bioenergetics and Mitochondria in the Pathophysiology of ALS. International Journal of Molecular Sciences, 2021, 22, 6352.	4.1	47
6	Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival. Seminars in Cancer Biology, 2021, 71, 109-121.	9.6	12
7	NAD+ Precursors and Antioxidants for the Treatment of Amyotrophic Lateral Sclerosis. Biomedicines, 2021, 9, 1000.	3.2	6
8	An Intercellular Flow of Glutathione Regulated by Interleukin 6 Links Astrocytes and the Liver in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants, 2021, 10, 2007.	5.1	8
9	Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants, 2020, 9, 901.	5.1	63
10	Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines, 2020, 8, 461.	3.2	74
11	Efficacy and tolerability of EH301 for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled human pilot study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 115-122.	1.7	62
12	Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biological Chemistry, 2019, 400, 589-612.	2.5	76
13	Glucocorticoid receptor antagonism overcomes resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. American Journal of Cancer Research, 2019, 9, 2580-2598.	1.4	6
14	Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. Journal of Medicinal Chemistry, 2017, 60, 9413-9436.	6.4	89
15	Role of Natural Stilbenes in the Prevention of Cancer. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-15.	4.0	145
16	Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells <i>In Vivo</i> : A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism. Antioxidants and Redox Signaling, 2016, 24, 974-990.	5.4	54
17	Glutathione in metastases: From mechanisms to clinical applications. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 253-267.	6.1	47
18	Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis. Free Radical Biology and Medicine, 2015, 85, 1-11.	2.9	101

#	Article	IF	CITATIONS
19	Glucocorticoid Receptor Knockdown Decreases the Antioxidant Protection of B16 Melanoma Cells: An Endocrine System-Related Mechanism that Compromises Metastatic Cell Resistance to Vascular Endothelium-Induced Tumor Cytotoxicity. PLoS ONE, 2014, 9, e96466.	2.5	24
20	Abstract 1605: Pterostilbene, a natural phytoalexin, effectively protects against UVB-induced skin carcinogenesis by increasing antioxidant cellular defenses and preventing mutagenesis. , 2014, , .		0
21	Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6- and glutathione-dependent mechanism. Journal of Translational Medicine, 2013, 11, 72.	4.4	58
22	Pterostilbene: Biomedical applications. Critical Reviews in Clinical Laboratory Sciences, 2013, 50, 65-78.	6.1	133
23	Glutathione and Bcl-2 targeting facilitates elimination by chemoradiotherapy of human A375 melanoma xenografts overexpressing bcl-xl, bcl-2, and mcl-1. Journal of Translational Medicine, 2012, 10, 8.	4.4	11
24	Pterostilbene-Induced Tumor Cytotoxicity: A Lysosomal Membrane Permeabilization-Dependent Mechanism. PLoS ONE, 2012, 7, e44524.	2.5	80
25	Natural polyphenols in cancer therapy. Critical Reviews in Clinical Laboratory Sciences, 2011, 48, 197-216.	6.1	136
26	Glutathione in Cancer Cell Death. Cancers, 2011, 3, 1285-1310.	3.7	247
27	Intertissue Flow of Glutathione (GSH) as a Tumor Growth-promoting Mechanism. Journal of Biological Chemistry, 2011, 286, 15716-15727.	3.4	24
28	Oxidative and Nitrosative Stress in the Metastatic Microenvironment. Cancers, 2010, 2, 274-304.	3.7	26
29	Nitric Oxide: A Rate-Limiting Factor for Metastases Development. , 2010, , 189-207.		0
30	Oxidative stress in environmental-induced carcinogenesis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 674, 36-44.	1.7	288
31	Tumoricidal activity of endothelium-derived NO and the survival of metastatic cells with high GSH and Bcl-2 levels. Nitric Oxide - Biology and Chemistry, 2008, 19, 107-114.	2.7	15
32	Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Molecular Cancer Therapeutics, 2008, 7, 3330-3342.	4.1	81
33	Nitric Oxide Mediates Natural Polyphenol-induced Bcl-2 Down-regulation and Activation of Cell Death in Metastatic B16 Melanoma. Journal of Biological Chemistry, 2007, 282, 2880-2890.	3.4	42
34	Bcl-2 and Glutathione Depletion Sensitizes B16 Melanoma to Combination Therapy and Eliminates Metastatic Disease. Clinical Cancer Research, 2007, 13, 2658-2666.	7.0	68
35	Glutathione in Cancer Biology and Therapy. Critical Reviews in Clinical Laboratory Sciences, 2006, 43, 143-181.	6.1	860
36	Bcl-2 and Mn-SOD Antisense Oligodeoxynucleotides and a Glutamine-enriched Diet Facilitate Elimination of Highly Resistant B16 Melanoma Cells by Tumor Necrosis Factor-α and Chemotherapy. Journal of Biological Chemistry, 2006, 281, 69-79.	3.4	40

#	Article	IF	CITATIONS
37	Acceleration of Glutathione Efflux and Inhibition of γ-Glutamyltranspeptidase Sensitize Metastatic B16 Melanoma Cells to Endothelium-induced Cytotoxicity. Journal of Biological Chemistry, 2005, 280, 6950-6959.	3.4	82
38	Association between Pterostilbene and Quercetin Inhibits Metastatic Activity of B16 Melanoma. Neoplasia, 2005, 7, 37-47.	5.3	138
39	A role for the 2-oxoglutarate carrier in glutathione transport into hepatocyte mitochondria?. Hepatology, 2004, 39, 570-571.	7.3	2
40	Tumor Cytotoxicity by Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 13888-13897.	3.4	44
41	Down-regulation of Glutathione and Bcl-2 Synthesis in Mouse B16 Melanoma Cells Avoids Their Survival during Interaction with the Vascular Endothelium. Journal of Biological Chemistry, 2003, 278, 39591-39599.	3.4	42
42	Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radical Biology and Medicine, 2002, 33, 387-398.	2.9	338
43	Î ³ -Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology, 2002, 35, 74-81.	7.3	81
44	Glutamine potentiates TNF-α-induced tumor cytotoxicity. Free Radical Biology and Medicine, 2001, 31, 642-650.	2.9	36
45	Tumoricidal Activity of Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 25775-25782.	3.4	47
46	Possible Mechanisms for Tumour Cell Sensitivity to TNF-a and Potential Therapeutic Applications. Current Pharmaceutical Biotechnology, 2001, 2, 119-130.	1.6	17
47	Mitochondrial glutathione depletion by glutamine in growing tumor cells. Free Radical Biology and Medicine, 2000, 29, 913-923.	2.9	38
48	Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clinical and Experimental Metastasis, 1999, 17, 567-574.	3.3	99
49	Changes in glutathione status and the antioxidant system in blood and in cancer cells associate with tumour growth in vivo. Free Radical Biology and Medicine, 1999, 26, 410-418.	2.9	180
50	Regulation of tumour cell sensitivity to TNFâ€induced oxidative stress and cytotoxicity: Role of glutathione. BioFactors, 1998, 8, 23-26.	5.4	25
51	Glutathione protects metastatic melanoma cells against oxidative stress in the murine hepatic microvasculature. Hepatology, 1998, 27, 1249-1256.	7.3	62
52	Glutathione and the rate of cellular proliferation determine tumour cell sensitivity to tumour necrosis factor in vivo. Biochemical Journal, 1997, 325, 183-189.	3.7	74
53	Blood Glutathione as an Index of Radiation-Induced Oxidative Stress in Mice and Humans. Free Radical Biology and Medicine, 1997, 22, 1203-1209.	2.9	146
54	Elimination of Ehrlich tumours by ATP-induced growth inhibition, glutathione depletion and X-rays. Nature Medicine, 1995, 1, 84-88.	30.7	69

#	Article	IF	CITATIONS
55	[35] Determination of oxidized glutathione in blood: High-performance liquid chromatography. Methods in Enzymology, 1994, 234, 367-371.	1.0	46
56	Effect of glutathione depletion by treatment with substrates of the glutathione S-transferases on gluconeogenesis and phosphoenolpyruvate recycling in rat hepatocytes. Biochemical Society Transactions, 1987, 15, 223-224.	3.4	0
57	Glutathione metabolism under the influence of hydroperoxides in the lactating mammary gland of the rat. Effect of glucose and extracellular ATP. Bioscience Reports, 1987, 7, 23-31.	2.4	4
58	Adenine nucleotide compartmentation in foetal rat hepatocytes. FEBS Letters, 1986, 208, 105-108.	2.8	4
59	Hormonal stimulation of glutamine degradation in rat hepatocytes. Biochemical Society Transactions, 1985, 13, 750-751.	3.4	Ο
60	The effect of cysteine and N-acetyl cysteine on rat liver glutathione (CSH). Biochemical Pharmacology, 1983, 32, 3483-3485.	4.4	38