Christopher Jeffrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3612175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and compositional dimensions of phytochemical diversity in the genus <i>Piper</i> reflect distinct ecological modes of action. Journal of Ecology, 2022, 110, 57-67.	1.9	14
2	The chemical ecology of tropical forest diversity: Environmental variation, chemical similarity, herbivory, and richness. Ecology, 2022, 103, e3762.	1.5	12
3	Elevated atmospheric concentrations of CO ₂ increase endogenous immune function in a specialist herbivore. Journal of Animal Ecology, 2021, 90, 628-640.	1.3	3
4	Chemically Mediated Multi-trophic Interactions. , 2021, , 17-38.		1
5	Phytochemistry reflects different evolutionary history in traditional classes versus specialized structural motifs. Scientific Reports, 2021, 11, 17247.	1.6	9
6	Fine-Scale Differentiation in Diet and Metabolomics of Small Mammals Across a Sharp Ecological Transition. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	5
7	Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. Ecology, 2020, 101, e03192.	1.5	9
8	Proximity to canopy mediates changes in the defensive chemistry and herbivore loads of an understory tropical shrub, <i>Piper kelleyi</i> . Ecology Letters, 2019, 22, 332-341.	3.0	21
9	Modern approaches to study plant–insect interactions in chemical ecology. Nature Reviews Chemistry, 2018, 2, 50-64.	13.8	97
10	Shedding Light on Chemically Mediated Tri-Trophic Interactions: A 1H-NMR Network Approach to Identify Compound Structural Features and Associated Biological Activity. Frontiers in Plant Science, 2018, 9, 1155.	1.7	12
11	Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity. Ecology, 2017, 98, 1750-1756.	1.5	32
12	Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytologist, 2016, 212, 208-219.	3.5	90
13	Natural products from Peperomia: occurrence, biogenesis and bioactivity. Phytochemistry Reviews, 2016, 15, 1009-1033.	3.1	22
14	Phytochemical diversity and synergistic effects on herbivores. Phytochemistry Reviews, 2016, 15, 1153-1166.	3.1	97
15	Access to 4-Oxazolidinones: A (3 + 2) Cycloaddition Approach. Organic Letters, 2016, 18, 6082-6085.	2.4	68
16	Oxidative (3 + 2) Cycloaddition Reactions of Diaza-Oxyallyl Cationic Intermediates and Indoles for the Synthesis of Imidazoloindolines. Organic Letters, 2016, 18, 476-479.	2.4	29
17	Access to bicyclic hydroxamate macrocycles via intramolecular aza-(4 + 3) cyloaddition reactions of aza-oxyallylic cation intermediates. Organic Chemistry Frontiers, 2016, 3, 330-334.	2.3	42
18	Dearomative Indole Cycloaddition Reactions of Aza-Oxyallyl Cationic Intermediates: Modular Access	6.6	150

CHRISTOPHER JEFFREY

#	Article	IF	CITATIONS
19	New building blocks for iminosugars: a concise synthesis of polyhydroxylated N-alkoxypiperidines through an intramolecular azepine ring contraction. Organic Chemistry Frontiers, 2015, 2, 497-501.	2.3	10
20	Phytochemical diversity drives plant–insect community diversity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10973-10978.	3.3	246
21	exo-Brevicomin Biosynthesis in the Fat Body of the Mountain Pine Beetle, Dendroctonus ponderosae. Journal of Chemical Ecology, 2014, 40, 181-189.	0.9	22
22	Antiherbivore Prenylated Benzoic Acid Derivatives from <i>Piper kelleyi</i> . Journal of Natural Products, 2014, 77, 148-153.	1.5	33
23	Cytotoxic non-aromatic B-ring flavanones from Piper carniconnectivum C. DC Phytochemistry, 2014, 97, 81-87.	1.4	10
24	Oxidative 1,4-Diamination of Dienes Using Simple Urea Derivatives. Organic Letters, 2014, 16, 5112-5115.	2.4	43
25	Trapping the elusive aza-oxyallylic cation: new opportunities in heterocycloaddition chemistry. Tetrahedron Letters, 2014, 55, 4690-4696.	0.7	70
26	Age-dependent changes from allylphenol to prenylated benzoic acid production in Piper gaudichaudianum Kunth. Phytochemistry, 2014, 106, 86-93.	1.4	25
27	New dimensions of tropical diversity: an inordinate fondness for insect molecules, taxa, and trophic interactions. Current Opinion in Insect Science, 2014, 2, 14-19.	2.2	21
28	exo-Brevicomin biosynthetic pathway enzymes from the Mountain Pine Beetle, Dendroctonus ponderosae. Insect Biochemistry and Molecular Biology, 2014, 53, 73-80.	1.2	24
29	Patterns of Secondary Metabolite Allocation to Fruits and Seeds in Piper reticulatum. Journal of Chemical Ecology, 2013, 39, 1373-1384.	0.9	34
30	Intramolecular Aza-[4+3] Cycloaddition Reactions of $\hat{I}\pm$ -Halohydroxamates. Synthesis, 2013, 45, 1825-1836.	1.2	66
31	1,4-Diamination of Cyclic Dienes via a (4 + 3) Cycloaddition of Diaza-allyl Cationic Intermediates. Organic Letters, 2012, 14, 5764-5767.	2.4	36
32	Generation and Reactivity of Aza-Oxyallyl Cationic Intermediates: Aza-[4 + 3] Cycloaddition Reactions for Heterocycle Synthesis. Journal of the American Chemical Society, 2011, 133, 7688-7691.	6.6	178
33	Dynamic Kinetic Resolution During a Vinylogous Payne Rearrangement: A Concise Synthesis of the Polar Pharmacophoric Subunit of (+)-Scyphostatin. Organic Letters, 2010, 12, 52-55.	2.4	25
34	A Hypervalent Iodine-Induced Double Annulation Enables a Concise Synthesis of the Pentacyclic Core Structure of the Cortistatins. Organic Letters, 2009, 11, 5394-5397.	2.4	106
35	Details of the Structure Determination of the Sulfated Steroids PSDS and PADS:Â New Components of the Sea Lamprey (Petromyzonmarinus) Migratory Pheromone. Journal of Organic Chemistry, 2007, 72, 7544-7550.	1.7	41
36	Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nature Protocols, 2007, 2, 2451-2458.	5.5	655

#	Article	IF	CITATIONS
37	Student Empowerment through "Mini-microscale" Reactions: The Epoxidation of 1 mg of Geraniol. Journal of Chemical Education, 2006, 83, 919.	1.1	2
38	Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nature Chemical Biology, 2005, 1, 324-328.	3.9	222
39	Relay Ring-Closing Metathesis (RRCM):Â A Strategy for Directing Metal Movement Throughout Olefin Metathesis Sequences. Journal of the American Chemical Society, 2004, 126, 10210-10211.	6.6	211