Christopher Jeffrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3612175/publications.pdf

Version: 2024-02-01

279798 315739 2,794 39 23 38 citations h-index g-index papers 49 49 49 3033 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nature Protocols, 2007, 2, 2451-2458.	12.0	655
2	Phytochemical diversity drives plant–insect community diversity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10973-10978.	7.1	246
3	Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nature Chemical Biology, 2005, 1, 324-328.	8.0	222
4	Relay Ring-Closing Metathesis (RRCM):Â A Strategy for Directing Metal Movement Throughout Olefin Metathesis Sequences. Journal of the American Chemical Society, 2004, 126, 10210-10211.	13.7	211
5	Generation and Reactivity of Aza-Oxyallyl Cationic Intermediates: Aza-[4 + 3] Cycloaddition Reactions for Heterocycle Synthesis. Journal of the American Chemical Society, 2011, 133, 7688-7691.	13.7	178
6	Dearomative Indole Cycloaddition Reactions of Aza-Oxyallyl Cationic Intermediates: Modular Access to Pyrroloindolines. Journal of the American Chemical Society, 2015, 137, 14858-14860.	13.7	150
7	A Hypervalent Iodine-Induced Double Annulation Enables a Concise Synthesis of the Pentacyclic Core Structure of the Cortistatins. Organic Letters, 2009, 11, 5394-5397.	4.6	106
8	Phytochemical diversity and synergistic effects on herbivores. Phytochemistry Reviews, 2016, 15, 1153-1166.	6.5	97
9	Modern approaches to study plant–insect interactions in chemical ecology. Nature Reviews Chemistry, 2018, 2, 50-64.	30.2	97
10	Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytologist, 2016, 212, 208-219.	7.3	90
11	Trapping the elusive aza-oxyallylic cation: new opportunities in heterocycloaddition chemistry. Tetrahedron Letters, 2014, 55, 4690-4696.	1.4	70
12	Access to 4-Oxazolidinones: A (3 + 2) Cycloaddition Approach. Organic Letters, 2016, 18, 6082-6085.	4.6	68
13	Intramolecular Aza-[4+3] Cycloaddition Reactions of α-Halohydroxamates. Synthesis, 2013, 45, 1825-1836.	2.3	66
14	Oxidative 1,4-Diamination of Dienes Using Simple Urea Derivatives. Organic Letters, 2014, 16, 5112-5115.	4.6	43
15	Access to bicyclic hydroxamate macrocycles via intramolecular aza- $(4 + 3)$ cyloaddition reactions of aza-oxyallylic cation intermediates. Organic Chemistry Frontiers, 2016, 3, 330-334.	4.5	42
16	Details of the Structure Determination of the Sulfated Steroids PSDS and PADS:Â New Components of the Sea Lamprey (Petromyzonmarinus) Migratory Pheromone. Journal of Organic Chemistry, 2007, 72, 7544-7550.	3.2	41
17	1,4-Diamination of Cyclic Dienes via a (4 + 3) Cycloaddition of Diaza-allyl Cationic Intermediates. Organic Letters, 2012, 14, 5764-5767.	4.6	36
18	Patterns of Secondary Metabolite Allocation to Fruits and Seeds in Piper reticulatum. Journal of Chemical Ecology, 2013, 39, 1373-1384.	1.8	34

#	Article	IF	CITATIONS
19	Antiherbivore Prenylated Benzoic Acid Derivatives from <i>Piper kelleyi</i> . Journal of Natural Products, 2014, 77, 148-153.	3.0	33
20	Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity. Ecology, 2017, 98, 1750-1756.	3.2	32
21	Oxidative $(3 + 2)$ Cycloaddition Reactions of Diaza-Oxyallyl Cationic Intermediates and Indoles for the Synthesis of Imidazoloindolines. Organic Letters, 2016, 18, 476-479.	4.6	29
22	Dynamic Kinetic Resolution During a Vinylogous Payne Rearrangement: A Concise Synthesis of the Polar Pharmacophoric Subunit of (+)-Scyphostatin. Organic Letters, 2010, 12, 52-55.	4.6	25
23	Age-dependent changes from allylphenol to prenylated benzoic acid production in Piper gaudichaudianum Kunth. Phytochemistry, 2014, 106, 86-93.	2.9	25
24	exo-Brevicomin biosynthetic pathway enzymes from the Mountain Pine Beetle, Dendroctonus ponderosae. Insect Biochemistry and Molecular Biology, 2014, 53, 73-80.	2.7	24
25	exo-Brevicomin Biosynthesis in the Fat Body of the Mountain Pine Beetle, Dendroctonus ponderosae. Journal of Chemical Ecology, 2014, 40, 181-189.	1.8	22
26	Natural products from Peperomia: occurrence, biogenesis and bioactivity. Phytochemistry Reviews, 2016, 15, 1009-1033.	6.5	22
27	New dimensions of tropical diversity: an inordinate fondness for insect molecules, taxa, and trophic interactions. Current Opinion in Insect Science, 2014, 2, 14-19.	4.4	21
28	Proximity to canopy mediates changes in the defensive chemistry and herbivore loads of an understory tropical shrub, <i>Piper kelleyi</i> . Ecology Letters, 2019, 22, 332-341.	6.4	21
29	Structural and compositional dimensions of phytochemical diversity in the genus <i>Piper</i> reflect distinct ecological modes of action. Journal of Ecology, 2022, 110, 57-67.	4.0	14
30	Shedding Light on Chemically Mediated Tri-Trophic Interactions: A 1H-NMR Network Approach to Identify Compound Structural Features and Associated Biological Activity. Frontiers in Plant Science, 2018, 9, 1155.	3.6	12
31	The chemical ecology of tropical forest diversity: Environmental variation, chemical similarity, herbivory, and richness. Ecology, 2022, 103, e3762.	3.2	12
32	Cytotoxic non-aromatic B-ring flavanones from Piper carniconnectivum C. DC Phytochemistry, 2014, 97, 81-87.	2.9	10
33	New building blocks for iminosugars: a concise synthesis of polyhydroxylated N-alkoxypiperidines through an intramolecular azepine ring contraction. Organic Chemistry Frontiers, 2015, 2, 497-501.	4.5	10
34	Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. Ecology, 2020, 101, e03192.	3.2	9
35	Phytochemistry reflects different evolutionary history in traditional classes versus specialized structural motifs. Scientific Reports, 2021, 11, 17247.	3.3	9
36	Fine-Scale Differentiation in Diet and Metabolomics of Small Mammals Across a Sharp Ecological Transition. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	5

#	Article	IF	CITATIONS
37	Elevated atmospheric concentrations of CO ₂ increase endogenous immune function in a specialist herbivore. Journal of Animal Ecology, 2021, 90, 628-640.	2.8	3
38	Student Empowerment through "Mini-microscale" Reactions: The Epoxidation of 1 mg of Geraniol. Journal of Chemical Education, 2006, 83, 919.	2.3	2
39	Chemically Mediated Multi-trophic Interactions. , 2021, , 17-38.		1