Christian MÃ;laga Chuquitaype

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3611242/publications.pdf Version: 2024-02-01

CHRISTIAN MÃILAGA

#	Article	IF	CITATIONS
1	Experimental monotonic and cyclic behaviour of blind-bolted angle connections. Engineering Structures, 2009, 31, 2540-2553.	5.3	107
2	Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 2021, 60, 102267.	3.9	72
3	Seismic protection of rocking structures with inerters. Earthquake Engineering and Structural Dynamics, 2019, 48, 528-547.	4.4	54
4	Component-based mechanical models for blind-bolted angle connections. Engineering Structures, 2010, 32, 3048-3067.	5.3	53
5	Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections. Earthquake Engineering and Structural Dynamics, 2017, 46, 201-219.	4.4	53
6	Response and component characterisation of semi-rigid connections to tubular columns under axial loads. Engineering Structures, 2012, 41, 510-532.	5.3	50
7	Behaviour of combined channel/angle connections to tubular columns under monotonic and cyclic loading. Engineering Structures, 2010, 32, 1600-1616.	5.3	44
8	Experimental and numerical assessment of the seismic response of steel structures with clutched inerters. Soil Dynamics and Earthquake Engineering, 2019, 121, 200-211.	3.8	43
9	Modified foundation modelling of dowel embedment in glulam connections. Construction and Building Materials, 2016, 102, 1168-1179.	7.2	39
10	Design of hysteretic dampers with optimal ductility for the transverse seismic control of cableâ€stayed bridges. Earthquake Engineering and Structural Dynamics, 2017, 46, 1811-1833.	4.4	36
11	A Critical Review on Structural Health Monitoring: Definitions, Methods, and Perspectives. Archives of Computational Methods in Engineering, 2022, 29, 2209-2235.	10.2	34
12	Behaviour of beam-to-tubular column angle connections under shear loads. Engineering Structures, 2012, 42, 434-456.	5.3	31
13	A three-dimensional plasticity-damage constitutive model for timber under cyclic loads. Computers and Structures, 2018, 195, 47-63.	4.4	31
14	Behaviour of hybrid timber beam-to-tubular steel column moment connections. Engineering Structures, 2017, 131, 243-263.	5.3	29
15	Machine Learning in Structural Design: An Opinionated Review. Frontiers in Built Environment, 2022, 8, .	2.3	26
16	Vector-IM-based assessment of alternative framing systems under bi-directional ground-motion. Engineering Structures, 2017, 132, 188-204.	5.3	25
17	Nonlinear dynamics of self-centring rocking steel frames using finite element models. Soil Dynamics and Earthquake Engineering, 2018, 115, 826-837.	3.8	25
18	Inelastic displacement demands in steel structures and their relationship with earthquake frequency content parameters. Earthquake Engineering and Structural Dynamics, 2012, 41, 831-852.	4.4	24

CHRISTIAN MÃILAGA

#	Article	IF	CITATIONS
19	Estimation of peak displacements in steel structures through dimensional analysis and the efficiency of alternative ground-motion time and length scales. Engineering Structures, 2015, 101, 264-278.	5.3	24
20	Contribution of secondary frames to the mitigation of collapse in steel buildings subjected to extreme loads. Structure and Infrastructure Engineering, 2016, 12, 45-60.	3.7	22
21	Seismic drift demands in multiâ€storey crossâ€laminated timber buildings. Earthquake Engineering and Structural Dynamics, 2018, 47, 1014-1031.	4.4	22
22	Seismic control of flexible rocking structures using inerters. Earthquake Engineering and Structural Dynamics, 2020, 49, 1519-1538.	4.4	22
23	Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge piers. Bulletin of Earthquake Engineering, 2017, 15, 3897-3918.	4.1	17
24	Dimensionless fragility analysis of seismic acceleration demands through low-order building models. Bulletin of Earthquake Engineering, 2019, 17, 3815-3845.	4.1	17
25	Performance evaluation of curved damper truss moment frames designed using equivalent energy design procedure. Engineering Structures, 2021, 226, 111363.	5.3	16
26	Uniform deformation design of outrigger braced skyscrapers: A simplified method for the preliminary design stage. Structures, 2021, 31, 395-405.	3.6	16
27	Rigidâ€plastic models for the seismic design and assessment of steel framed structures. Earthquake Engineering and Structural Dynamics, 2009, 38, 1609-1630.	4.4	14
28	Dynamic response of post-tensioned rocking structures with inerters. International Journal of Mechanical Sciences, 2020, 187, 105927.	6.7	14
29	Performance-based seismic design and assessment of rocking timber buildings equipped with inerters. Engineering Structures, 2021, 248, 113164.	5.3	14
30	Seismic shear and acceleration demands in multi-storey cross-laminated timber buildings. Engineering Structures, 2019, 198, 109467.	5.3	13
31	Behaviour of open beam-to-tubular column angle connections under combined loading conditions. Steel and Composite Structures, 2014, 16, 157-185.	1.3	10
32	Design of timber-concrete composite (TCC) bridges with under-deck stay cables. Engineering Structures, 2019, 189, 589-604.	5.3	9
33	Strongâ€motion duration and response scaling of yielding and degrading eccentric structures. Earthquake Engineering and Structural Dynamics, 2021, 50, 635-654.	4.4	9
34	Limit-state analysis of parabolic arches subjected to inertial loading in different gravitational fields using a variational formulation. Engineering Structures, 2021, 228, 111501.	5.3	9
35	Consideration of seismic demand in the design of braced frames. Steel Construction, 2011, 4, 65-72.	0.8	8
36	Trade-off Pareto optimum design of an innovative curved damper truss moment frame considering structural and non-structural objectives. Structures, 2020, 28, 1338-1353.	3.6	8

CHRISTIAN MÃilaga

#	Article	IF	CITATIONS
37	Seismic control of rocking structures via external resonators. Earthquake Engineering and Structural Dynamics, 2020, 49, 1180-1196.	4.4	8
38	Novel Digitally-manufactured Wooden Beams for Vibration Reduction. Structures, 2018, 16, 1-9.	3.6	6
39	Experimental assessment and damage modelling of hybrid timber beam-to-steel column connections under cyclic loads. Engineering Structures, 2019, 200, 109682.	5.3	6
40	Buckling-enabled composite bracing for damage-avoidance rocking structures. International Journal of Mechanical Sciences, 2020, 170, 105359.	6.7	6
41	OpenArch: An open-source package for determining the minimum-thickness of arches under seismic loads. SoftwareX, 2021, 15, 100731.	2.6	6
42	Effect of Base-Level Inerters on the Higher Mode Response of Uplifting Structures. Journal of Engineering Mechanics - ASCE, 2021, 147, .	2.9	6
43	Critical Buckling Strains in Thick Cold-Formed Circular-Hollow Sections under Cyclic Loading. Journal of Structural Engineering, 2020, 146, .	3.4	5
44	Seismic response of timber frames with cane and mortar walls. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2014, 167, 693-703.	0.8	4
45	Optimal arch forms under inâ€plane seismic loading in different gravitational environments. Earthquake Engineering and Structural Dynamics, 2022, 51, 1522-1539.	4.4	4
46	Structural efficiency of varying-thickness regolith-based lunar arches against inertial loading. Acta Astronautica, 2022, 191, 438-450.	3.2	3
47	Impact and clutch nonlinearities in the seismic response of inerto-rocking systems. Bulletin of Earthquake Engineering, 2023, 21, 1713-1745.	4.1	3
48	A novel approach for deterioration and damage identification in building structures based on Stockwell-Transform and deep convolutional neural network. Journal of Structural Integrity and Maintenance, 2022, 7, 136-150.	1.5	3
49	A Numerical Study on the Structural Response of Steel Structures under Post-Blast Travelling Fires. , 2019, , .		1
50	OpenMoist: A Python code for transient moisture transfer analysis. SoftwareX, 2021, 15, 100712.	2.6	1
51	Seismic design and assessment of steel structures based on rigid-plastic response history analysis. , 2009, , .		1
52	Feasibility of timber-concrete composite road bridges with under- deck stay cables. , 2017, , .		1
53	Assessment of efficiency of intensity measures for performance-based travelling fire design. , 2017, , .		1
54	COMPARISON OF THE EFFICIENCY OF MINIMUM-THICKNESS CIRCULAR AND PARABOLIC ARCHES FOR VARIOUS GRAVITY CONDITIONS. , 2021, , .		0

#	Article	IF	CITATIONS
55	Risk-Based Seismic Assessment of Curved Damper Truss Moment Frame. , 2021, , 159-174.		Ο
56	Response of beam-to-tubular column angle connections subjected to combined flexure and axial loading. , 2012, , 159-166.		0
57	Shear behaviour of open beam-to-tubular column angle connections. , 2012, , 133-139.		Ο
58	DAMAGE-AVOIDANCE STEEL ROCKING FRAMES WITH BUCKLING-ENABLED COMPOSITE BRACING. , 2020, , .		0
59	RESPONSE OF NONLINEAR SECONDARY OSCILLATORS IN CASCADE TO RANDOM EXCITATION. , 2020, , .		Ο
60	SEISMIC PROTECTION OF MULTI-STOREY ROCKING STRUCTURES WITH INERTERS. , 2020, , .		0