Neeraj Bhanot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/361079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrated approach for analysing the enablers and barriers of sustainable manufacturing. Journal of Cleaner Production, 2017, 142, 4412-4439.	9.3	179
2	A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. Journal of Intelligent Manufacturing, 2019, 30, 2743-2758.	7.3	99
3	An integrated DEMATEL-MMDE-ISM based approach for analysing the barriers of IoT implementation in the manufacturing industry. International Journal of Production Research, 2020, 58, 2454-2476.	7.5	96
4	Enablers and Barriers of Sustainable Manufacturing: Results from a Survey of Researchers and Industry Professionals. Procedia CIRP, 2015, 29, 562-567.	1.9	73
5	Benchmarking the performance indicators of Indian Railway container business using data envelopment analysis. Benchmarking, 2014, 21, 101-120.	4.6	29
6	An integrated sustainability assessment framework: a case of turning process. Clean Technologies and Environmental Policy, 2016, 18, 1475-1513.	4.1	29
7	An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 2016, 48, 538-543.	1.9	20
8	An integrated DEMATEL-MMDE-ISM approach for analyzing environmental sustainability indicators in MSMEs. Environmental Science and Pollution Research, 2022, 29, 2035-2051.	5.3	18
9	Application of Lean Six Sigma framework for improving manufacturing efficiency: a case study in Indian context. International Journal of Productivity and Performance Management, 2022, 71, 1561-1589.	3.7	16
10	An Integrated Decision-Making Approach for Cause-And-Effect Analysis of Sustainable Manufacturing Indicators. Sustainability, 2020, 12, 1517.	3.2	14
11	Effect of integrating industrial and agricultural wastes on concrete performance with and without microbial activity. Environmental Science and Pollution Research, 2022, 29, 86092-86108.	5.3	11
12	Identifying the perspectives for sustainability enhancement. Journal of Advances in Management Research, 2016, 13, 244-270.	3.0	8
13	Investigation on the Potential Use of EAF Dust and RSA for Sustainable Concrete Production. Lecture Notes in Civil Engineering, 2019, , 127-135.	0.4	6
14	Sustainable Concrete Production by Integrating Wastes: A Comparative Study with and Without Bacillus Megaterium. Lecture Notes in Civil Engineering, 2019, , 377-385.	0.4	6
15	A Study on Biomachining of Aluminium Alloy 4004 Using Acidithiobacillus ferrooxidans. Lecture Notes in Civil Engineering, 2019, , 45-50.	0.4	4
16	Application of Aspergillus Niger for Biomachining of Aluminium Alloy 4004. Lecture Notes in Civil Engineering, 2019, , 127-132.	0.4	3
17	A Comparative Study on Application of Acidithiobacillus ferrooxidans and Aspergillus niger for Biomachining of EN-19 Alloy Steel. Lecture Notes in Civil Engineering, 2019, , 323-335.	0.4	2
18	Process Parameter Optimization for Abrasive Water Jet Machining of Titanium Alloy Using Meta-Heuristic Algorithms. MATEC Web of Conferences, 2018, 221, 01004.	0.2	1

#	Article	IF	CITATIONS
19	Partial replacement of cement with induction furnace dust for enhancing concrete properties with and without Aspergillus niger fungus: a green building approach. Environmental Science and Pollution Research, 0, , .	5.3	1
20	Survey results for sustainable turning process parameters based on perceptions of researchers and industry professionals. International Journal of Advanced Operations Management, 2016, 8, 79.	0.3	0
21	A conceptual framework of internet of things for efficient municipal solid waste management and waste to energy implementation. International Journal of Environment and Waste Management, 2019, 23, 410.	0.3	Ο
22	Biomachining of Aluminum Alloy 46500 Using Acidithiobacillus ferrooxidans. Lecture Notes in Civil Engineering, 2021, , 567-579.	0.4	0
23	Product mix decisions with complete shipment and multiple physical resources as constraints. International Journal of Logistics Systems and Management, 2021, 38, 307.	0.2	Ο