
Terry C Hazen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3610400/publications.pdf Version: 2024-02-01

TEDDY C HAZEN

#	Article	IF	CITATIONS
1	Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 2010, 330, 204-208.	12.6	1,109
2	Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill. Applied and Environmental Microbiology, 2011, 77, 7962-7974.	3.1	779
3	Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environmental Science & Technology, 2011, 45, 6709-6715.	10.0	711
4	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E836-45.	7.1	595
5	Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME Journal, 2012, 6, 1715-1727.	9.8	547
6	Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth. Science, 2008, 322, 275-278.	12.6	474
7	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
8	Application of a High-Density Oligonucleotide Microarray Approach To Study Bacterial Population Dynamics during Uranium Reduction and Reoxidation. Applied and Environmental Microbiology, 2006, 72, 6288-6298.	3.1	404
9	Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome. Science, 2006, 314, 479-482.	12.6	350
10	Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the <i>Deepwater Horizon</i> Oil Spill in the Gulf of Mexico. Environmental Science & Technology, 2013, 47, 10860-10867.	10.0	344
11	Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME Journal, 2010, 4, 660-672.	9.8	332
12	Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME Journal, 2014, 8, 1464-1475.	9.8	325
13	GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME Journal, 2010, 4, 1167-1179.	9.8	300
14	Deepâ€sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology, 2012, 14, 2405-2416.	3.8	275
15	New Insights into the Function and Clobal Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Applied and Environmental Microbiology, 2018, 84, .	3.1	259
16	Metagenomic analysis and metabolite profiling of deep–sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Frontiers in Microbiology, 2013, 4, 50.	3.5	257
17	Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME Journal, 2012, 6, 451-460.	9.8	240
18	Environmental Whole-Genome Amplification To Access Microbial Populations in Contaminated Sediments. Applied and Environmental Microbiology, 2006, 72, 3291-3301.	3.1	213

#	Article	IF	CITATIONS
19	Microbial Responses to the <i>Deepwater Horizon</i> Oil Spill: From Coastal Wetlands to the Deep Sea. Annual Review of Marine Science, 2015, 7, 377-401.	11.6	205
20	Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome, 2020, 8, 51.	11.1	205
21	Marine Oil Biodegradation. Environmental Science & amp; Technology, 2016, 50, 2121-2129.	10.0	183
22	Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil. PLoS ONE, 2011, 6, e19306.	2.5	178
23	Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors. MBio, 2015, 6, e00326-15.	4.1	173
24	Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Frontiers in Microbiology, 2014, 5, 130.	3.5	172
25	Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community. PLoS ONE, 2010, 5, e8812.	2.5	170
26	How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nature Reviews Microbiology, 2011, 9, 452-466.	28.6	169
27	Reoxidation of Bioreduced Uranium under Reducing Conditions. Environmental Science & Technology, 2005, 39, 6162-6169.	10.0	157
28	Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach. Journal of Bacteriology, 2006, 188, 4068-4078.	2.2	155
29	Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbial Ecology, 1991, 22, 293-304.	2.8	154
30	Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill. PLoS ONE, 2012, 7, e41305.	2.5	146
31	Systems biology approach to bioremediation. Current Opinion in Biotechnology, 2012, 23, 483-490.	6.6	135
32	The Electron Transfer System of Syntrophically Grown <i>Desulfovibrio vulgaris</i> . Journal of Bacteriology, 2009, 191, 5793-5801.	2.2	133
33	Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology and Evolution, 2018, 2, 499-509.	7.8	116
34	Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environmental Pollution, 2013, 173, 224-230.	7.5	113
35	Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biology and Biochemistry, 2018, 126, 57-63.	8.8	111
36	Microbial Interactions With Dissolved Organic Matter Drive Carbon Dynamics and Community Succession. Frontiers in Microbiology, 2018, 9, 1234.	3.5	107

#	Article	IF	CITATIONS
37	Global Analysis of Heat Shock Response in <i>Desulfovibrio vulgaris</i> Hildenborough. Journal of Bacteriology, 2006, 188, 1817-1828.	2.2	106
38	Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community. MBio, 2016, 7, e02234-15.	4.1	105
39	Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Molecular Systems Biology, 2013, 9, 674.	7.2	103
40	Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Systematic and Applied Microbiology, 2014, 37, 60-67.	2.8	103
41	Metagenomic applications in environmental monitoring and bioremediation. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1345-1354.	3.0	102
42	Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities. Bioenergy Research, 2010, 3, 146-158.	3.9	100
43	Glycoside Hydrolase Activities of Thermophilic Bacterial Consortia Adapted to Switchgrass. Applied and Environmental Microbiology, 2011, 77, 5804-5812.	3.1	99
44	Responses of microbial community functional structures to pilot-scale uranium <i>in situ</i> bioremediation. ISME Journal, 2010, 4, 1060-1070.	9.8	98
45	GeoChipâ€based analysis of functional microbial communities during the reoxidation of a bioreduced uraniumâ€contaminated aquifer. Environmental Microbiology, 2009, 11, 2611-2626.	3.8	95
46	Cell-Wide Responses to Low-Oxygen Exposure in <i>Desulfovibrio vulgaris</i> Hildenborough. Journal of Bacteriology, 2007, 189, 5996-6010.	2.2	94
47	Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms. Applied and Environmental Microbiology, 2017, 83, .	3.1	94
48	Probing the active fraction of soil microbiomes using BONCAT-FACS. Nature Communications, 2019, 10, 2770.	12.8	93
49	Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis. Applied and Environmental Microbiology, 2006, 72, 4370-4381.	3.1	92
50	Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Marine Pollution Bulletin, 2018, 129, 370-378.	5.0	91
51	Pathway Confirmation and Flux Analysis of Central Metabolic Pathways in <i>Desulfovibrio vulgaris</i> Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Journal of Bacteriology, 2007, 189, 940-949.	2.2	90
52	Histopathology of red-sore disease (Aeromonas hydrophila) in naturally and experimentally infected largemouth bass Micropterus salmoides (Lacepede). Journal of Fish Diseases, 1979, 2, 263-277.	1.9	87
53	In Situ Long-Term Reductive Bioimmobilization of Cr(VI) in Groundwater Using Hydrogen Release Compound. Environmental Science & Technology, 2008, 42, 8478-8485.	10.0	86
54	Microbial Response to the MC-252 Oil and Corexit 9500 in the Gulf of Mexico. Frontiers in Microbiology, 2012, 3, 357.	3.5	86

#	Article	IF	CITATIONS
55	Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, <i>Enterobacter lignolyticus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2173-82.	7.1	85
56	Comparison of Aerobic and Anaerobic Biotreatment of Municipal Solid Waste. Journal of the Air and Waste Management Association, 2004, 54, 815-822.	1.9	84
57	In Situ Reduction of Chromium(VI) in Heavily Contaminated Soils through Organic Carbon Amendment. Journal of Environmental Quality, 2003, 32, 1641-1649.	2.0	81
58	Functional Gene Array-Based Analysis of Microbial Community Structure in Groundwaters with a Gradient of Contaminant Levels. Environmental Science & Technology, 2009, 43, 3529-3534.	10.0	80
59	Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Frontiers in Microbiology, 2015, 6, 1205.	3.5	77
60	Ultrastructure of Red-Sore Lesions on Largemouth Bass (Micropterus salmoides): Association of the CiliateEpistylissp. and the BacteriumAeromonas hydrophila*. Journal of Protozoology, 1978, 25, 351-355.	0.8	76
61	Complete genome sequence of "Enterobacter lignolyticus―SCF1. Standards in Genomic Sciences, 2011, 5, 69-85.	1.5	76
62	PCR Amplification-Independent Methods for Detection of Microbial Communities by the High-Density Microarray PhyloChip. Applied and Environmental Microbiology, 2011, 77, 6313-6322.	3.1	74
63	Thermal Effluent and the Epizootiology of the Ciliate Epistylis and the Bacterium Aeromonas in Association with Centrarchid Fish. Transactions of the American Microscopical Society, 1976, 95, 687.	0.3	71
64	Fecal coliforms as indicators in tropical waters: A review. Toxicity Assessment, 1988, 3, 461-477.	0.6	71
65	Chromium Diffusion and Reduction in Soil Aggregates. Environmental Science & Technology, 2001, 35, 3169-3174.	10.0	70
66	Analysis of a Ferric Uptake Regulator (Fur) Mutant of <i>Desulfovibrio vulgaris</i> Hildenborough. Applied and Environmental Microbiology, 2007, 73, 5389-5400.	3.1	70
67	Microbial community composition and diversity in Caspian Sea sediments. FEMS Microbiology Ecology, 2015, 91, 1-11.	2.7	70
68	Advances in monitoring environmental microbes. Current Opinion in Biotechnology, 2013, 24, 526-533.	6.6	69
69	Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2010, 4, 1386-1397.	9.8	67
70	Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators. PLoS ONE, 2010, 5, e11285.	2.5	66
71	Survival and activity of <i>Salmonella typhimurium</i> and <i>Escherichia coli</i> in tropical freshwater. Journal of Applied Bacteriology, 1989, 67, 61-69.	1.1	65
72	The Unique Chemistry of Eastern Mediterranean Water Masses Selects for Distinct Microbial Communities by Depth. PLoS ONE, 2015, 10, e0120605.	2.5	65

#	Article	IF	CITATIONS
73	Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of <i>Desulfovibrio vulgaris</i> Hildenborough to Salt Adaptation. Applied and Environmental Microbiology, 2010, 76, 1574-1586.	3.1	64
74	Response of <i>Desulfovibrio vulgaris</i> to Alkaline Stress. Journal of Bacteriology, 2007, 189, 8944-8952.	2.2	62
75	Reductive Dechlorination of Trichloroethylene and Tetrachloroethylene under Aerobic Conditions in a Sediment Column. Applied and Environmental Microbiology, 1994, 60, 2200-2204.	3.1	62
76	Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanolâ€ŧolerant <i>Geobacillus</i> strain. Biotechnology and Bioengineering, 2009, 102, 1377-1386.	3.3	61
77	Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Briefings in Functional Genomics & Proteomics, 2006, 5, 133-143.	3.8	60
78	Microfluidic fluorescence in situ hybridization and flow cytometry (μFlowFISH). Lab on A Chip, 2011, 11, 2673.	6.0	58
79	Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania. Frontiers in Microbiology, 2014, 5, 522.	3.5	58
80	Temporal Transcriptomic Analysis as Desulfovibrio vulgaris Hildenborough Transitions into Stationary Phase during Electron Donor Depletion. Applied and Environmental Microbiology, 2006, 72, 5578-5588.	3.1	57
81	Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. MBio, 2018, 9, .	4.1	57
82	Functional Genomics with a Comprehensive Library of Transposon Mutants for the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20. MBio, 2014, 5, e01041-14.	4.1	56
83	Flux Analysis of Central Metabolic Pathways in Geobacter metallireducens during Reduction of Soluble Fe(III)-Nitrilotriacetic Acid. Applied and Environmental Microbiology, 2007, 73, 3859-3864.	3.1	55
84	Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides. Reviews in Environmental Science and Biotechnology, 2005, 4, 157-183.	8.1	52
85	Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 3860-3869.	3.1	51
86	Microbial biogeography across a full-scale wastewater treatment plant transect: evidence for immigration between coupled processes. Applied Microbiology and Biotechnology, 2014, 98, 4723-4736.	3.6	51
87	Distribution and in situ survival and activity ofKlebsiella pneumoniae andEscherichia coli in a tropical rain forest watershed. Current Microbiology, 1987, 15, 213-218.	2.2	50
88	Microbial community response to addition of polylactate compounds to stimulate hexavalent chromium reduction in groundwater. Chemosphere, 2011, 85, 660-665.	8.2	50
89	Effect of gaseous nitrogen and phosphorus injection on in situ bioremediation of a trichloroethylene-contaminated site. Journal of Hazardous Materials, 1995, 41, 287-298.	12.4	49
90	Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments. Applied and Environmental Microbiology, 2015, 81, 4976-4983.	3.1	49

#	Article	IF	CITATIONS
91	Unexpected competitiveness of Methanosaeta populations at elevated acetate concentrations in methanogenic treatment of animal wastewater. Applied Microbiology and Biotechnology, 2017, 101, 1729-1738.	3.6	49
92	Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiology Ecology, 2018, 94, .	2.7	49
93	Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization. BMC Biotechnology, 2012, 12, 38.	3.3	48
94	Changes in microbial dynamics during long-term decomposition in tropical forests. Soil Biology and Biochemistry, 2013, 66, 60-68.	8.8	47
95	Hydrogen peroxideâ€induced oxidative stress responses in <i>Desulfovibrio vulgaris</i> Hildenborough. Environmental Microbiology, 2010, 12, 2645-2657.	3.8	46
96	Characterization of NaCl tolerance in <i>Desulfovibrio vulgaris</i> Hildenborough through experimental evolution. ISME Journal, 2013, 7, 1790-1802.	9.8	46
97	Application of phenotypic microarrays to environmental microbiology. Current Opinion in Biotechnology, 2012, 23, 41-48.	6.6	45
98	Geophysical Monitoring of Hydrological and Biogeochemical Transformations Associated with Cr(VI) Bioremediation. Environmental Science & Technology, 2008, 42, 3757-3765.	10.0	44
99	Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation. Journal of Industrial Microbiology and Biotechnology, 1997, 18, 204-212.	3.0	43
100	Phylogenetic and Functional Biomakers as Indicators of Bacterial Community Responses to Mixed-Waste Contamination. Environmental Science & Technology, 2006, 40, 2601-2607.	10.0	43
101	Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov Standards in Genomic Sciences, 2015, 10, 106.	1.5	43
102	Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during <i>In Situ</i> Uranium Reduction. Applied and Environmental Microbiology, 2012, 78, 2966-2972.	3.1	42
103	Microbial Community Succession during Lactate Amendment and Electron Acceptor Limitation Reveals a Predominance of Metal-Reducing Pelosinus spp. Applied and Environmental Microbiology, 2012, 78, 2082-2091.	3.1	42
104	Large Circular Plasmids from Groundwater Plasmidomes Span Multiple Incompatibility Groups and Are Enriched in Multimetal Resistance Genes. MBio, 2019, 10, .	4.1	42
105	Distribution of Chromium Contamination and Microbial Activity in Soil Aggregates. Journal of Environmental Quality, 2003, 32, 541-549.	2.0	41
106	Microbial Community Structure and Functional Potential Along a Hypersaline Gradient. Frontiers in Microbiology, 2018, 9, 1492.	3.5	41
107	ISOLATION OF Aeromonas hydrophila FROM THE AMERICAN ALLIGATOR, Alligator mississippiensis. Journal of Wildlife Diseases, 1979, 15, 239-243.	0.8	40
108	Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2. Standards in Genomic Sciences, 2014, 9, 19.	1.5	40

#	Article	IF	CITATIONS
109	The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill. Frontiers in Microbiology, 2018, 9, 808.	3.5	40
110	Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiology Ecology, 2013, 86, 200-214.	2.7	39
111	Real-time molecular monitoring of chemical environment in obligate anaerobes during oxygen adaptive response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12599-12604.	7.1	38
112	Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Archives of Microbiology, 2009, 191, 221-232.	2.2	38
113	Complete Genome Sequence of the Electricity-Producing " <i>Thermincola potens</i> ―Strain JR. Journal of Bacteriology, 2010, 192, 4078-4079.	2.2	38
114	Tropical Source Water. Brock/Springer Series in Contemporary Bioscience, 1990, , 32-53.	0.3	38
115	Comparison of the in situ survival and activity ofKlebsiella pneumoniae andEscherichia coli in tropical marine environments. Microbial Ecology, 1988, 15, 41-57.	2.8	37
116	Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs. Frontiers in Microbiology, 2014, 5, 409.	3.5	37
117	Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities. PLoS ONE, 2013, 8, e83909.	2.5	36
118	Survival and distribution of aeromonas hydrophila in near-shore coastal waters of Puerto Rico receiving rum distillery effluent. Water Research, 1983, 17, 319-326.	11.3	35
119	Mineralogical, Chemical and Biological Characterization of an Anaerobic Biofilm Collected from a Borehole in a Deep Gold Mine in South Africa. Geomicrobiology Journal, 2007, 24, 491-504.	2.0	35
120	Impacts of Glutaraldehyde on Microbial Community Structure and Degradation Potential in Streams Impacted by Hydraulic Fracturing. Environmental Science & Technology, 2018, 52, 5989-5999.	10.0	35
121	Stress and Body Condition in a Population of Largemouth Bass: Implications for Red-Sore Disease. Transactions of the American Fisheries Society, 1980, 109, 532-536.	1.4	34
122	Effects of Organic Carbon Supply Rates on Uranium Mobility in a Previously Bioreduced Contaminated Sediment. Environmental Science & amp; Technology, 2008, 42, 7573-7579.	10.0	34
123	Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate. Journal of Applied Microbiology, 2011, 110, 1023-1031.	3.1	34
124	Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites. Frontiers in Microbiology, 2017, 8, 2618.	3.5	34
125	Ecology ofAeromonas hydrophila in a South Carolina cooling reservoir. Microbial Ecology, 1979, 5, 179-195.	2.8	32
126	Environmental biotechnology: A bioremediation perspective. Remediation, 2005, 15, 5-25.	2.4	32

#	Article	IF	CITATIONS
127	Functional Characterization of Crp/Fnr-Type Global Transcriptional Regulators in Desulfovibrio vulgaris Hildenborough. Applied and Environmental Microbiology, 2012, 78, 1168-1177.	3.1	32
128	Survey of large protein complexes in <i>D. vulgaris</i> reveals great structural diversity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16580-16585.	7.1	29
129	Colloid-based multiplexed screening for plant biomass-degrading glycoside hydrolase activities in microbial communities. Energy and Environmental Science, 2011, 4, 2884.	30.8	29
130	Colwellia psychrerythraea Strains from Distant Deep Sea Basins Show Adaptation to Local Conditions. Frontiers in Environmental Science, 2016, 4, .	3.3	29
131	In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions. Journal of Contaminant Hydrology, 2016, 187, 55-64.	3.3	29
132	Response of Aquatic Bacterial Communities to Hydraulic Fracturing in Northwestern Pennsylvania: A Five-Year Study. Scientific Reports, 2018, 8, 5683.	3.3	29
133	Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Frontiers in Microbiology, 2019, 10, 995.	3.5	29
134	Microbial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments. PLoS ONE, 2014, 9, e100383.	2.5	28
135	Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil. Scientific Reports, 2017, 7, 5762.	3.3	27
136	Push-pull tests for estimating effective porosity: expanded analytical solution and in situ application. Hydrogeology Journal, 2018, 26, 381-393.	2.1	27
137	Using the stress response to monitor process control: pathways to more effective bioremediation. Current Opinion in Biotechnology, 2006, 17, 285-290.	6.6	26
138	Draft Genome Sequence of the Lignin-Degrading <i>Burkholderia</i> sp. Strain LIG30, Isolated from Wet Tropical Forest Soil. Genome Announcements, 2014, 2, .	0.8	26
139	Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass. Microbial Biotechnology, 2018, 11, 84-97.	4.2	26
140	Phosphate addition increases tropical forest soil respiration primarily by deconstraining microbial population growth. Soil Biology and Biochemistry, 2019, 130, 43-54.	8.8	26
141	Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment. Environmental Science & Technology, 2008, 42, 8901-8907.	10.0	25
142	Effects of thermal effluent on body condition of largemouth bass. Nature, 1978, 274, 470-471.	27.8	24
143	Draft Genome Sequences for Two Metal-Reducing Pelosinus fermentans Strains Isolated from a Cr(VI)-Contaminated Site and for Type Strain R7. Journal of Bacteriology, 2012, 194, 5147-5148.	2.2	24
144	Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2015, 9, 2360-2372.	9.8	24

#	Article	IF	CITATIONS
145	Bioenergy feedstockâ€specific enrichment of microbial populations during highâ€solids thermophilic deconstruction. Biotechnology and Bioengineering, 2011, 108, 2088-2098.	3.3	23
146	Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation. Frontiers in Microbiology, 2017, 8, 2300.	3.5	23
147	High spatiotemporal variability of bacterial diversity over short time scales with unique hydrochemical associations within a shallow aquifer. Water Research, 2019, 164, 114917.	11.3	23
148	Uranium Reduction in Sediments under Diffusion-Limited Transport of Organic Carbon. Environmental Science & Technology, 2005, 39, 7077-7083.	10.0	22
149	Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation. Nucleic Acids Research, 2009, 37, 2926-2939.	14.5	22
150	High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of <i>Desulfovibrio vulgaris</i> . Journal of Proteome Research, 2012, 11, 5720-5735.	3.7	22
151	Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. Environmental Science & Technology, 2017, 51, 3609-3620.	10.0	22
152	Enrichment of Bacteria From Eastern Mediterranean Sea Involved in Lignin Degradation via the Phenylacetyl-CoA Pathway. Frontiers in Microbiology, 2018, 9, 922.	3.5	22
153	Iron―and aluminiumâ€induced depletion of molybdenum in acidic environments impedes the nitrogen cycle. Environmental Microbiology, 2019, 21, 152-163.	3.8	22
154	THE PARASITE FAUNA OF THE AMERICAN ALLIGATOR (Alligator mississippiensis) IN SOUTH CAROLINA. Journal of Wildlife Diseases, 1978, 14, 435-439.	0.8	20
155	Peripheral Blood Components in Alligator mississippiensis. Transactions of the American Microscopical Society, 1981, 100, 210.	0.3	20
156	Chemotaxis ofAeromonas hydrophila to the surface mucus of fish. Current Microbiology, 1982, 7, 371-375.	2.2	20
157	A model for the density ofAeromonas hydrophila in Albemarle Sound, North Carolina. Microbial Ecology, 1983, 9, 137-153.	2.8	20
158	Autecology of Vibrio vulnificus and Vibrio parahaemolyticus in tropical waters. Water Research, 1989, 23, 923-931.	11.3	20
159	Contribution of mobile genetic elements to <i>Desulfovibrio vulgaris</i> genome plasticity. Environmental Microbiology, 2009, 11, 2244-2252.	3.8	20
160	Overcoming the anaerobic hurdle in phenotypic microarrays: Generation and visualization of growth curve data for Desulfovibrio vulgaris Hildenborough. Journal of Microbiological Methods, 2009, 76, 159-168.	1.6	19
161	Anaerobic Decomposition of Switchgrass by Tropical Soil-Derived Feedstock-Adapted Consortia. MBio, 2012, 3, .	4.1	19
162	A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. Environmental Science & Technology, 2015, 49, 12922-12931.	10.0	19

#	Article	IF	CITATIONS
163	High-Quality Draft Genome Sequences of Four Lignocellulose-Degrading Bacteria Isolated from Puerto Rican Forest Soil: <i>Gordonia</i> sp., <i>Paenibacillus</i> sp., <i>Variovorax</i> sp., and <i>Vogesella</i> sp. Genome Announcements, 2017, 5, .	0.8	18
164	Microbial Communities across Global Marine Basins Show Important Compositional Similarities by Depth. MBio, 2020, 11, .	4.1	18
165	Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere, 2020, 255, 126951.	8.2	18
166	Relationship of season, thermal loading and red-sore disease with various haematological parameters in Micropterus salmoides. Journal of Fish Biology, 1978, 12, 491-498.	1.6	17
167	Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples. Journal of Microbiological Methods, 2011, 86, 204-209.	1.6	17
168	Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrassâ€adapted bacterial consortia. Biotechnology and Bioengineering, 2012, 109, 1140-1145.	3.3	17
169	StressChip as a High-Throughput Tool for Assessing Microbial Community Responses to Environmental Stresses. Environmental Science & Technology, 2013, 47, 9841-9849.	10.0	17
170	Survival and activity of Streptococcus faecalis and Escherichia coli in petroleum-contaminated tropical marine waters. Environmental Pollution, 1989, 56, 263-281.	7.5	16
171	Evaluation of biodegradation potential of foam embedded Burkholderia cepacia G4. Biotechnology Letters, 1998, 20, 663-666.	2.2	16
172	Octomeric pyruvate-ferredoxin oxidoreductase from Desulfovibrio vulgaris. Journal of Structural Biology, 2007, 159, 9-18.	2.8	16
173	Metallomics of two microorganisms relevant to heavy metal bioremediation reveal fundamental differences in metal assimilation and utilization. Metallomics, 2014, 6, 1004.	2.4	16
174	Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported. Molecular and Cellular Proteomics, 2016, 15, 1539-1555.	3.8	16
175	Parasitism and r- and K-selection. , 1977, , 9-62.		16
176	A Long-Term Study on the Population Biology of Crepidostomum cooperi (Trematoda: Allocreadidae) in the Burrowing Mayfly, Hexagenia limbata (Ephemeroptera). American Midland Naturalist, 1986, 116, 304.	0.4	15
177	Metals other than uranium affected microbial community composition in a historical uranium-mining site. Environmental Science and Pollution Research, 2015, 22, 19326-19341.	5.3	15
178	Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation. Environmental Science & amp; Technology, 2017, 51, 2879-2889.	10.0	15
179	Comparison of Thaumarchaeotal populations from four deep sea basins. FEMS Microbiology Ecology, 2017, 93, .	2.7	15
180	Immunofluorescence of Aeromonas hydrophila as measured by fluorescence photometric microscopy. Canadian Journal of Microbiology, 1980, 26, 161-168.	1.7	14

#	Article	IF	CITATIONS
181	Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness. ISME Journal, 2008, 2, 642-655.	9.8	14
182	Long Range Movement and Homing by Largemouth Bass (Micropterus salmoides) in a Thermally Altered Reservoir. Copeia, 1978, 1978, 542.	1.3	13
183	Generalized Schemes for High-Throughput Manipulation of the Desulfovibrio vulgaris Genome. Applied and Environmental Microbiology, 2011, 77, 7595-7604.	3.1	13
184	Rapid detection of microbial cell abundance in aquatic systems. Biosensors and Bioelectronics, 2016, 85, 915-923.	10.1	13
185	Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions. Molecular and Cellular Proteomics, 2016, 15, 2186-2202.	3.8	12
186	Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site. Standards in Genomic Sciences, 2017, 12, 23.	1.5	12
187	Environmental Selection, Dispersal, and Organism Interactions Shape Community Assembly in High-Throughput Enrichment Culturing. Applied and Environmental Microbiology, 2017, 83, .	3.1	12
188	Surface Water Microbial Community Response to the Biocide 2,2-Dibromo-3-Nitrilopropionamide, Used in Unconventional Oil and Gas Extraction. Applied and Environmental Microbiology, 2019, 85, .	3.1	12
189	Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Frontiers in Microbiology, 2021, 12, 642422.	3.5	12
190	Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough. PLoS ONE, 2011, 6, e21470.	2.5	12
191	Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron. Standards in Genomic Sciences, 2013, 7, 382-398.	1.5	12
192	Agglutinating Antibody to Aeromonas hydrophila in Wild Largemouth Bass. Transactions of the American Fisheries Society, 1981, 110, 514-518.	1.4	11
193	Rapid screening for bacteria capable of degrading toxic organinc compounds. Journal of Microbiological Methods, 1993, 18, 339-347.	1.6	11
194	Bacterial Biomarkers of Marcellus Shale Activity in Pennsylvania. Frontiers in Microbiology, 2018, 9, 1697.	3.5	11
195	Characterization of a Metal-Resistant Bacillus Strain With a High Molybdate Affinity ModA From Contaminated Sediments at the Oak Ridge Reservation. Frontiers in Microbiology, 2020, 11, 587127.	3.5	11
196	Survival and activity ofStreptococcus faecalis andEscherichia coli in tropical freshwater. Microbial Ecology, 1989, 18, 125-134.	2.8	10
197	Immobilization of Burkholderia cepacia in polyurethane-based foams: embedding efficiency and effect on bacterial activity. Journal of Industrial Microbiology and Biotechnology, 1997, 18, 389-395.	3.0	9
198	Genome Sequence of Halomonas sp. Strain KO116, an Ionic Liquid-Tolerant Marine Bacterium Isolated from a Lignin-Enriched Seawater Microcosm. Genome Announcements, 2015, 3, .	0.8	9

#	Article	IF	CITATIONS
199	A Novel Analysis Method for Paired-Sample Microbial Ecology Experiments. PLoS ONE, 2016, 11, e0154804.	2.5	9
200	Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition. PLoS ONE, 2018, 13, e0194663.	2.5	9
201	Patterns in extracellular enzyme activity and microbial diversity in deep-sea Mediterranean sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 158, 103231.	1.4	9
202	Omics of oil biodegradation. Current Opinion in Chemical Engineering, 2022, 36, 100800.	7.8	9
203	Observations on the ecology of Clinostomum marginatum in largemouth bass (Micropterus) Tj ETQq1 1 0.78431	4 <u>rg</u> BT /O	verlock 10 T
204	Distribution of Chromium Contamination and Microbial Activity in Soil Aggregates. Journal of Environmental Quality, 2003, 32, 541.	2.0	8
205	Draft Genome Sequence of Thalassotalea sp. Strain ND16A Isolated from Eastern Mediterranean Sea Water Collected from a Depth of 1,055 Meters. Genome Announcements, 2014, 2, .	0.8	8
206	Clay Flocculation Effect on Microbial Community Composition in Water and Sediment. Frontiers in Environmental Science, 2018, 6, .	3.3	8
207	Improved Method for Estimating Reaction Rates During Pushâ€Pull Tests. Ground Water, 2019, 57, 292-302.	1.3	8
208	Bioremediation. , 2018, , 247-266.		8
209	Genomic Features and Pervasive Negative Selection in <i>Rhodanobacter</i> Strains Isolated from Nitrate and Heavy Metal Contaminated Aquifer. Microbiology Spectrum, 2022, 10, e0259121.	3.0	8
210	Chemotactic behavior of Aeromonas hydrophila. Current Microbiology, 1984, 10, 13-17.	2.2	7
211	Unconventional Oil and Gas Energy Systems: An Unidentified Hotspot of Antimicrobial Resistance?. Frontiers in Microbiology, 2019, 10, 2392.	3.5	7
212	Performance and community structure dynamics of microbial electrolysis cells operated on multiple complex feedstocks. Biotechnology for Biofuels, 2020, 13, 169.	6.2	7
213	Characterization of Wastewater Treatment Plant Microbial Communities and the Effects of Carbon Sources on Diversity in Laboratory Models. PLoS ONE, 2014, 9, e105689.	2.5	7
214	Complete Genome Sequence of the Subsurface, Mesophilic Sulfate-Reducing Bacterium Desulfovibrio aespoeensis Aspo-2. Genome Announcements, 2014, 2, .	0.8	6
215	Sustained Ability of a Natural Microbial Community to Remove Nitrate from Groundwater. Ground Water, 2022, 60, 99-111.	1.3	6
216	Identification of Propionate-Degrading Microbial Populations in Methanogenic Processes for Waste Treatment: <i>Methanosaeta</i> and <i>Methanoculleus</i> . Environmental Engineering Science, 2022, 39, 202-211.	1.6	6

#	Article	IF	CITATIONS
217	Survival of Vibrio cholerae in treated and untreated rum distillery effluents. Water Research, 1989, 23, 103-113.	11.3	5
218	In situ survival of genetically engineered microorganisms in a tropical aquatic environment. , 1996, 11, 21-25.		5
219	Use of conventional methods and whole cell hybridization to monitor the microbial response to triethylphosphate. Journal of Microbiological Methods, 1997, 29, 145-151. Survival of Candida albicans and Pseudomonas aeruginosa in oil polluted tropical coastal	1.6	5
220	waters1This paper was prepared in connection with work done under a subcontract to Contract No. DE-AC09-76SR00001 with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to	11.3	5
221	authorize others all or part of the cop. Water Research, 1998, 32, 2154-2170. Draft Genome Sequence for Desulfovibrio africanus Strain PCS. Genome Announcements, 2013, 1, e0014413.	0.8	5
222	Cometabolic Bioremediation. , 2018, , 1-15.		5
223	Comparative study of the effects of biocides and metal oxide nanoparticles on microbial community structure in a stream impacted by hydraulic fracturing. Chemosphere, 2021, 284, 131255.	8.2	5
224	In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations. PLoS ONE, 2020, 15, e0232437.	2.5	5
225	Studies on the Population Biology of Two Larval Trematodes in the Amphipod, Hyalella azteca. American Midland Naturalist, 1977, 98, 213.	0.4	4
226	Dynamics of Microbial Community Composition and Function duringIn SituBioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5063-5063.	3.1	4
227	A Method for Fixing and Staining Peritrich Ciliates. Transactions of the American Microscopical Society, 1976, 95, 693.	0.3	3
228	Use of microrespirometry to determine viability of immobilized Burkholderia cepacia G4. Biotechnology Letters, 1997, 11, 571-575.	0.5	3
229	Environmental biotechnology. Current Opinion in Biotechnology, 2012, 23, 414.	6.6	3
230	The S uper C hip for microbial community structure, and function from all environments. Microbial Biotechnology, 2013, 6, 450-452.	4.2	3
231	Draft Genome Sequence of <i>Pseudoalteromonas</i> sp. Strain ND6B, an Oil-Degrading Isolate from Eastern Mediterranean Sea Water Collected at a Depth of 1,210 Meters. Genome Announcements, 2014, 2, .	0.8	3
232	High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater. Genome Announcements, 2015, 3, .	0.8	3
233	Co-extraction of DNA and PLFA from soil samples. Journal of Microbiological Methods, 2015, 115, 64-66.	1.6	3

Lessons from the 2010 Deepwater Horizon Accident in the Gulf of Mexico. , 2018, , 1-19.

#	Article	IF	CITATIONS
235	Ecofunctional enzymes of microbial communities in ground water. FEMS Microbiology Reviews, 1997, 20, 379-389.	8.6	3
236	Lessons from the 2010 Deepwater Horizon Accident in the Gulf of Mexico. , 2020, , 847-864.		3
237	Coding-Complete Genome Sequence of a SARS-CoV-2 Variant Obtained from Raw Sewage at the University of Tennessee—Knoxville Campus. Microbiology Resource Announcements, 2021, 10, e0104921.	0.6	3
238	Survival and distribution ofYersinia enterocolitica in a tropical rain forest stream. Current Microbiology, 1989, 18, 119-126.	2.2	2
239	Biodegradation of Trichloroethylene by <i>Alcaligenes eutrophus</i> JMP134 in a Laboratory Scale Bioreactor. Hazardous Waste and Hazardous Materials, 1994, 11, 491-499.	0.4	2
240	16S rRNA Gene Microarray Analysis of Microbial Communities in Ethanol-Stimulated Subsurface Sediment. Microbes and Environments, 2011, 26, 261-265.	1.6	2
241	In Situ: Groundwater Bioremediation. , 2018, , 1-18.		2
242	This issue of Environmental Microbiology is dedicated to the memory of David. C. White. Environmental Microbiology, 2006, 8, 2059-2061.	3.8	1
243	Visualization of Growth Curve Data from Phenotype Microarray Experiments. Proceedings / International Conference on Information Visualisation, 2007, , .	0.0	1
244	Subcellular Localization of Proteins in the Anaerobic Sulfate Reducer Desulfovibrio vulgaris via SNAP-tag Labeling and Photoconversion. Microscopy and Microanalysis, 2010, 16, 864-865.	0.4	1
245	Environmental Systems Microbiology of Contaminated Environments. , 2015, , 5.1.6-1-5.1.6-10.		1
246	Near-Complete Genome Sequence of <i>Thalassospira</i> sp. Strain KO164 Isolated from a Lignin-Enriched Marine Sediment Microcosm. Genome Announcements, 2016, 4, .	0.8	1
247	Oil Biodegradation in Deep Marine Basins. , 2019, , 71-88.		1
248	Environmental Systems Biology Approach to Bioremediation. Advances in Environmental Microbiology, 2019, , 103-127.	0.3	1
249	Effects of Cone Penetrometer Testing on Shallow Hydrogeology at a Contaminated Site. Frontiers in Environmental Science, 2022, 9, .	3.3	1
250	Complete Genome Sequence of Bacillus cereus Strain CPT56D-587-MTF, Isolated from a Nitrate- and Metal-Contaminated Subsurface Environment. Microbiology Resource Announcements, 2022, 11, e0014522.	0.6	1
251	Increased Resistance to Aeromonas hydrophila in Mice Experimentally Infected with Trypanosoma cruzi. Journal of Parasitology, 1981, 67, 468.	0.7	0
252	Environmental Biotechnology. Second Edition. By Alan Scragg. Oxford and New York: Oxford University Press. \$54.50 (paper). viii + 447 p; ill.; index. ISBN: 0â€19â€926867â€3. 2004 Quarterly Review of Biology, 2006, 81, 304-304.	0.1	0

#	ARTICLE	IF	CITATIONS
253	Case Study: Full Scale In Situ Bioremediation Demonstration of the Savannah River Site Integrated Demonstration Project. Agronomy, 0, , 743-765.	0.2	0
254	Oil Biodegradation in Deep Marine Basins. , 2018, , 1-18.		0
255	In situ decay of polyfluorinated benzoic acids under anaerobic conditions. Journal of Contaminant Hydrology, 2018, 217, 8-16.	3.3	Ο
256	Draft Genome Sequence of <i>Bacillus</i> sp. Strain EB106-08-02-XG196, Isolated from High-Nitrate-Contaminated Sediment. Microbiology Resource Announcements, 2020, 9, .	0.6	0
257	Evaluating the Impact of Hydraulic Fracturing on Streams using Microbial Molecular Signatures. Journal of Visualized Experiments, 2021, , .	0.3	Ο
258	Lignin-baited Bio-trap Beads to Search for Novel Lignin Degrading Microbes in Tropical Forest Soil. , 2012, , .		0
259	THE ULTRAMICROBACTERIAL COMMUNITY OF THE URANIUM AND HEAVY METAL CONTAMINATED Y-12 AQUIFER. , 2018, , .		Ο
260	ULTRAMICROBACTERIA IN URANIUM-CONTAMINATED Y-12 GROUNDWATER. , 2018, , .		0
261	TEN-YEAR INVESTIGATION OF THE SUBSURFACE MICROBIOME IN A VARIABLY SATURATED CONTAMINANT PATHWAY WITH TWO CARBON-AMENDMENTS. , 2019, , .		Ο
262	In Situ Groundwater Bioremediation. , 2019, , 197-214.		0
263	Cometabolic Bioremediation. , 2019, , 233-247.		Ο
264	MODELING DYNAMIC GEOCHEMICAL PROCESSES: HOW WATER TABLE FLUCTUATIONS INFLUENCE REDOX CONDITIONS IN THE PRESENCE OF CONTAMINATION. , 2019, , .		0
265	Applying Stable Isotopes for Source Fingerprinting of Dissolved Organic Nitrogen in Groundwater. , 2020, , .		Ο
266	In Situ Bioremediation via Horizontal Wells. , 2020, , 79-86.		0
267	In Situ Bioremediation via Horizontal Wells. , 2020, , 79-86.		О
268	Large-Data Omics Approaches in Modern Remediation. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	0