
Toshiki Aoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3610272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel highly efficient <i>absolute</i> optical resolution method by serial combination of two asymmetric reactions from acetylene monomers having racemic substituents. Chirality, 2022, 34, 450-461.	1.3	5
2	Absolute asymmetric polymerizations in solution needing no physical chiral source. Polymer, 2022, 245, 124673.	1.8	3
3	Synthesis and oxygen permselectivity of multi-stranded graft copolymers. Polymer, 2022, 255, 125092.	1.8	0
4	Optical-Dissymmetry Phase Transitions in an Achiral Helical-Spring Polymer through Controlled Noncovalent Interactions. Journal of Physical Chemistry B, 2021, 125, 8251-8260.	1.2	5
5	Improved oxygen permeation of a multi-stranded network two-dimensional polymer synthesized by three-step polymerizations of a novel monomer bearing three different polymerizable groups followed by photoexfoliation. Polymer, 2021, 228, 123857.	1.8	1
6	Improvement of oxygen permselectivity of a rigid helical polyphenylacetylene: Effect of flexible groups, degree of polymerization, composites, thickness, orientation, and network formation. Polymer, 2021, 228, 123900.	1.8	1
7	Macromolecular Design for Oxygen/Nitrogen Permselective Membranes—Top-Performing Polymers in 2020—. Polymers, 2021, 13, 3012.	2.0	13
8	Synthesis and Oxygen Permeation of Novel Alternating Copolymers Containing Disiloxane and Imido Groups by Hydrosilylation Polyaddition. Chemistry Letters, 2021, 50, 1617-1619.	0.7	1
9	Highly Efficient <i>Absolute</i> Optical Resolution with Circularly Polarized Light via Two Serial Enantioselective Reactions of Acetylene Monomers Bearing a Racemic Substituent. Chemistry Letters, 2021, 50, 1688-1690.	0.7	1
10	Thermotropic, Reversible, and Highly Selective One-Handed Helical Structure of Hydroxyl Group-Containing Poly(phenylacetylene)s and Its Static Memory. Macromolecules, 2021, 54, 10216-10223.	2.2	8
11	On-off reversible switching of the chirality of one-handed helical Poly(phenylacetylene)s by polarity stimuli. Polymer, 2021, 237, 124347.	1.8	2
12	Control of Intramolecular Hydrogen Bonding in a Conformationâ€5witchable Helicalâ€5pring Polymer by Solvent and Temperature. Angewandte Chemie - International Edition, 2020, 59, 1837-1844.	7.2	21
13	Synthesis, in-situ membrane preparation, and good gas permselectivity of insoluble poly(substituted) Tj ETQq1 1 122081.	0.784314 1.8	ł rgBT /Over 4
14	Synthesis and Permselectivity of a <i>Soluble</i> Two-Dimensional Macromolecular Sheet by Solid–Solid Interfacial Polycondensation Followed by Chemical Exfoliation. , 2020, 2, 1121-1128.		8
15	Synthesis of Cis-Cisoid or Cis-Transoid Poly(Phenyl-Acetylene)s Having One or Two Carbamate Groups as Oxygen Permeation Membrane Materials. Membranes, 2020, 10, 199.	1.4	3
16	Control of Intramolecular Hydrogen Bonding in a Conformationâ€5witchable Helicalâ€5pring Polymer by Solvent and Temperature. Angewandte Chemie, 2020, 132, 1853-1860.	1.6	9
17	Synthesis of Well-Defined Chiral Oligopinanylsiloxane Graft Copoly(phenylacetylene)s Using the Macromonomer Method and Their Enantioselective Permeability. ACS Applied Polymer Materials, 2020, 2, 853-861.	2.0	8
18	Molecular-Spring Shape-Memory Polymer Based on Energy Elasticity and Local Phase Transition. Macromolecules, 2019, 52, 7984-7993.	2.2	4

#	Article	IF	CITATIONS
19	Antiparallel Arrangement of 2,7-Substituted 9,10-Bis(phenylethynyl)anthracene Assisted by Hydrogen Bonding of Terminal Units. Bulletin of the Chemical Society of Japan, 2019, 92, 1672-1678.	2.0	0
20	New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes. Nanomaterials, 2019, 9, 859.	1.9	6
21	Synthesis of a Novel AB Block Copolyaceylene Consisting of a Dynamic Cis-transoidal <i>Racemic</i> Helical Sequence and a Static Cis-cisoidal <i>One-handed</i> Helical Sequence. Chemistry Letters, 2019, 48, 506-509.	0.7	2
22	Simultaneous improvement of permeability and selectivity in enantioselective permeation through solid chiral membranes from a newly synthesized one-handed helical polyphenylacetylene with aldehyde pendant groups by enantioselective reaction. Polymer, 2019, 171, 45-49.	1.8	11
23	Helix-Sense-Selective Polymerization of Phenylacetylenes Having a Porphyrin and a Zinc-Porphyrin Group: One-Handed Helical Arrangement of Porphyrin Pendants. Polymers, 2019, 11, 274.	2.0	3
24	Helix-sense-selective Polymerization of 3,5-bis(hydroxymethyl)phenylacetylene Rigidly Bearing Galvinoxyl Residues and Their Chiroptical Properties. Polymers, 2019, 11, 1877.	2.0	4
25	Solvent-tuned dual emission of a helical poly[3,5-bis(hydroxymethyl)phenylacetylene] connected with a π-conjugated chromophore. Polymer Journal, 2018, 50, 533-537.	1.3	3
26	Synthesis and oxygen permeation of novel well-defined homopoly(phenylacetylene)s with different sizes and shapes of oligosiloxanyl side groups. Journal of Membrane Science, 2018, 561, 26-38.	4.1	13
27	Synthesis of Two Wellâ€Defined Quadrupleâ€Stranded Copolymers having Two Kinds of Backbones by Postpolymerization of a Helical Template Polymer. Macromolecular Rapid Communications, 2018, 39, 1700556.	2.0	3
28	Fluorescence emission and image patterning from selective photocyclic aromatization of cis–cisoid helical poly(phenylacetylene)s in situ in a film via top-down photodegradation. Dyes and Pigments, 2018, 149, 444-448.	2.0	2
29	[Rh(L-alaninate)(1,5-Cyclooctadiene)] Catalyzed Helix-Sense-Selective Polymerizations of Achiral Phenylacetylenes. Polymers, 2018, 10, 1223.	2.0	5
30	Enhanced performances of enantioselective permeation through one-handed helical polymer membranes by enantioselective imine exchange reaction with permeants and by partially decomposed reaction of the membrane. Polymer, 2018, 156, 39-43.	1.8	13
31	Synthesis and Ultrahigh Oxygen Permeability of Silicon-containing <i>cis</i> - <i>cisoidal</i> Poly(substituted phenylacetylene)s. Chemistry Letters, 2018, 47, 1314-1317.	0.7	8
32	Synthesis and oxygen permeability of novel graft copolymers consisting of a polyphenylacetylene backbone and long oligosiloxane grafts from phenylacetylene-type macromonomers. Polymer, 2018, 156, 66-70.	1.8	10
33	Chiral teletransmission in the cis-cisoidal sequence of copoly(substituted acetylene)s by multiple stage solvent exchange of the copolymer solution through a membrane. Polymer, 2018, 154, 253-257.	1.8	4
34	Dimesitylboryl-containing polydiphenylacetylene with a large Stokes shift, high fluorescence efficiency, and fluoride ion sensing ability. Polymer, 2018, 148, 310-315.	1.8	5
35	Ultrahigh oxygen permeability of chemically-modified membranes of novel (co)polyacetylenes having a photodegradative backbone and crosslinkable side chains. Polymer, 2018, 149, 117-123.	1.8	1
36	Synthesis of soluble oligsiloxane-end-capped hyperbranched polyazomethine and their application to CO2/N2 separation membranes. Designed Monomers and Polymers, 2018, 21, 99-104.	0.7	5

#	Article	IF	CITATIONS
37	Helix-Sense-Selective Polymerization of Achiral Phenylacetylenes and Unique Properties of the Resulting Cis-cisoidal Polymers. Polymer Reviews, 2017, 57, 89-118.	5.3	49
38	Oxygen Permselectivities of Novel Multi-bridged Copolymers Synthesized by Imine Metathesis between N-Imines and C-Imines in the Pendant Groups of Two Poly(substituted acetylene)s. Chemistry Letters, 2017, 46, 401-404.	0.7	3
39	Transformer of Achiral Amounts to Chirality: Double Reversal of Enantioselectivity Using a Single Cocatalyst in Asymmetric Polymerization. Macromolecules, 2017, 50, 7468-7474.	2.2	10
40	A New Analysis Method for Quantitative Determination of Triads of Copoly(substituted acetylene) Backbones by Highly Selective Photocyclic Aromatization. Chemistry Letters, 2017, 46, 1608-1611.	0.7	3
41	Subnanoporous Highly Oxygen Permselective Membranes from Poly(conjugated hyperbranched) Tj ETQq1 1 1,3-Bis(silyl)phenylacetylene Using a Single Rh Catalytic System: Control of Their Structures and Permselectivities. Macromolecules. 2017. 50. 7121-7136.	0.784314 rgB 2.2	T /Overlock 11
42	Oxygen permselectivities through supramolecular polymer membranes prepared by highly selective photocyclic aromatization ofÂpoly(substituted acetylene). Polymer, 2017, 127, 232-235.	1.8	6
43	Fluorescence emission enhancement of poly(phenylacetylene) via thermal annealing. Molecular Crystals and Liquid Crystals, 2017, 645, 50-57.	0.4	4
44	Annealing-Induced Circular Dichroism Enhancement in Luminescent Conjugated Polymers with an Intramolecular Stack Structure. Macromolecules, 2017, 50, 6433-6438.	2.2	14
45	Novel isolated, L-amino acid-ligated rhodium catalysts that induce highly helix-sense-selective polymerization of an achiral 3,4,5-trisubstituted phenylacetylene. Journal of Polymer Science Part A, 2016, 54, 2346-2351.	2.5	4
46	Synthesis of One-Handed Helical Block Copoly(substituted acetylene)s Consisting of Dynamic <i>cis-transoidal</i> and Static <i>cis-cisoidal</i> Block: Chiral Teleinduction in Helix-Sense-Selective Polymerization Using a Chiral Living Polymer as an Initiator. ACS Macro Letters, 2016, 5, 1381-1385.	2.3	37
47	Influence of a hydrodynamic environment on chain rigidity, liquid crystallinity, absorptivity, and photoluminescence of hydrogen-bonding-assisted helical poly(phenylacetylene). RSC Advances, 2016, 6, 36661-36666.	1.7	7
48	Highly Emissive, Optically Active Poly(diphenylacetylene) Having a Bulky Chiral Side Group. ACS Macro Letters, 2016, 5, 622-625.	2.3	28
49	High Oxygen Permselectivity through a Membrane from Novel Soluble Imido-bridged Ladder Polysiloxane. Chemistry Letters, 2016, 45, 424-426.	0.7	5
50	Synthesis and oxygen permselectivity of copoly(substituted acetylene)s with bulky fused polycyclic aliphatic groups. Polymer, 2016, 99, 695-703.	1.8	3
51	Highly Selective Photocyclic Aromatization (SCAT)-GPC Method for Quantitative Determination of Microstructures of Copoly(substituted acetylenes) Backbone. Chemistry Letters, 2016, 45, 813-815.	0.7	5
52	Selective Polymerization of Dimethylsilylphenylacetylene and the Gas Permselectivity of the Resulting Polymer Membranes. Chemistry Letters, 2015, 44, 182-184.	0.7	5
53	Helical Conformation Stability of Poly[3,5-bis(hydroxymethyl)phenylacetylene]s Depending on the Length of Their Rigid and Linear π-Conjugated Side Groups. Chemistry Letters, 2015, 44, 1413-1415.	0.7	7
54	Quantitative Introduction of Perfluoroalkyl Groups to Poly(diphenylacetylene) Membranes via Three-step Membrane Reaction Including Click Reaction and Their Gas Permeability. Chemistry Letters, 2015, 44, 1679-1681.	0.7	2

#	Article	IF	CITATIONS
55	Helix-sense-selective Polymerization of Achiral Phenylacetylenes by Using One-handed Helical Poly(phenylacetylene)s as Chiral Cocatalysts Prepared by Helix-sense-selective Polymerization of Achiral Phenylacetylenes. Chemistry Letters, 2015, 44, 318-320.	0.7	3
56	Highly Efficient Helix-sense-selective Polymerization of an Achiral Phenylacetylene Having a Bulky Group. Chemistry Letters, 2015, 44, 1777-1779.	0.7	1
57	Synthesis of a Fluorineâ€Containing Cisâ€Cisoidal Oneâ€Handed Helical Polyphenylacetylene and Application of Highly Selective Photocyclic Aromatization Product on Oxygen Permselective Membrane. Chirality, 2015, 27, 459-463.	1.3	8
58	A Chiral Supramolecular Polymer Membrane with no Chiral Substituents by Highly Selective Photocyclic Aromatization of a Oneâ€Handed Helical <i>Cis</i> â€ <i>cisoidal</i> Polyphenylacetylene. Macromolecular Chemistry and Physics, 2015, 216, 530-537.	1.1	14
59	A Helical Polyphenylacetylene Having Amino Alcohol Moieties Without Chiral Side Groups as a Chiral Ligand for the Asymmetric Addition of Diethylzinc to Benzaldehyde. Chirality, 2015, 27, 454-458.	1.3	9
60	Two-Dimensional and Related Polymers: Concepts, Synthesis, and their Potential Application as Separation Membrane Materials. Polymer Reviews, 2015, 55, 57-89.	5.3	48
61	Synthesis and oxygen permeation of novel polymers of phenylacetylenes having two hydroxyl groups via different lengths of spacers. Polymer, 2015, 56, 199-206.	1.8	19
62	Optically Active Conjugated Polymer Nanoparticles from Chiral Solvent Annealing and Nanoprecipitation. Macromolecules, 2015, 48, 4754-4757.	2.2	51
63	Helix-Sense-Selective Polymerization of Novel Substituted Acetylenes Having a Rigid Planar Imino-Linked Substituent and Quantitative Polymer Reactions in the Optically Active Polymer Membranes. Kobunshi Ronbunshu, 2014, 71, 372-381.	0.2	3
64	Facile synthesis of five 2D surface modifiers by highly selective photocyclic aromatization and efficient enhancement of oxygen permselectivities of three polymer membranes by surface modification using a small amount of the 2D surface modifiers. Polymer, 2014, 55, 1384-1396.	1.8	14
65	Synthesis of sequential poly(1,3-phenyleneethynylene)-based polyradicals and through-space antiferromagnetic interaction of their solid state. Polymer, 2014, 55, 1097-1102.	1.8	7
66	Helix-sense-selective Degradation of Poly[4-dodecyloxy-3,5-bis(hydroxymethyl)phenylacetylene] by Selective Photocyclic Aromatization (SCAT) Using Circularly Polarized Light (CPL). Chemistry Letters, 2014, 43, 1476-1477.	0.7	15
67	Synthesis and Enantioselective Permeability of One-handed Helical Multihydroxy Poly(phenylacetylene) Membrane by In Situ Removal of the Original Chiral Substituents. Chemistry Letters, 2014, 43, 237-239.	0.7	9
68	Synthesis of Two-dimensional Polymer for Molecular-sieve Membranes. Membrane, 2014, 39, 118-131.	0.0	0
69	Top-Down Preparation of Self-Supporting Supramolecular Polymeric Membranes Using Highly Selective Photocyclic Aromatization of Cis–Cisoid Helical Poly(phenylacetylene)s in the Membrane State. Journal of the American Chemical Society, 2013, 135, 602-605.	6.6	112
70	Living-like helix-sense-selective polymerization of an achiral substituted acetylene having bulky substituents. Polymer, 2013, 54, 1729-1733.	1.8	14
71	Flexible self-supporting supramolecular polymeric membranes consisting of 1,3,5-trisubstituted benzene derivatives synthesized by highly selective photocyclic aromatization of helical poly(phenylacetylene)s in the membrane state. Polymer, 2013, 54, 4431-4435.	1.8	20
72	Folding-Induced Through-Space Magnetic Interaction of Poly(1,3-phenyleneethynylene)-Based Polyradicals. Macromolecules, 2013, 46, 2583-2589.	2.2	14

#	Article	IF	CITATIONS
73	Excellent oxygen permselectivity of fluorine-containing poly(trimethylsilyldiphenylacetylene)s prepared by direct alkylation of perfluorodecyl groups in membrane state. Polymer, 2013, 54, 2231-2234.	1.8	15
74	Chiral Amplification during Asymmetricâ€Induced Copolymerization of Phenylacetylenes with Tight <i>Cis</i> â€ <i>Cisoidal</i> Main Chains. Macromolecular Rapid Communications, 2013, 34, 1140-1144.	2.0	16
75	Helix-sense-selective Polymerization of 3,5-Bis(hydroxymethyl)phenylacetylene Connected with a Rigid and π-Conjugated Substituent. Chemistry Letters, 2013, 42, 1087-1089.	0.7	14
76	Facile Synthesis of an Amphiphilic 1,3,5-Trisubstituted Benzene as a Novel Surface Modifier by Selective Photocyclic Aromatization and Efficient Improvement of Oxygen Permselectivity by the Addition of the Surface Modifier. Chemistry Letters, 2013, 42, 1090-1092.	0.7	9
77	Helix-sense-selective Polymerization of Achiral Acetylene Monomer Catalyzed by Rh Zwitterionic Complexes with Tethered Chiral Amino and Ether Groups. Chemistry Letters, 2013, 42, 278-280.	0.7	14
78	Helix-sense-selective Polymerization of Substituted Acetylenes by Using an Isolated Rh Chiral Initiator with an Amino Acid Ligand. Chemistry Letters, 2013, 42, 430-432.	0.7	19
79	Transformation from preformed racemic helical poly(phenylacetylene)s to the enantioenriched helical polymers by chiral solvation, followed by removal of the chiral solvents. Polymer Journal, 2012, 44, 327-333.	1.3	12
80	Enhanced Gas Permselectivity of Copoly(Hyperbranched Macromonomer) Synthesized by One-pot Simultaneous Copolymerization of Dimethylsilyl-containing Phenylacetylenes. Chemistry Letters, 2012, 41, 1462-1464.	0.7	15
81	Chiral Teleinduction in Asymmetric Polymerization of 3,5-Bis(hydroxymethyl)phenylacetylene Having a Chiral Group via a Very Long and Rigid Spacer at 4-Position. Chemistry Letters, 2012, 41, 244-246.	0.7	8
82	Pseudo helix-sense-selective polymerisation of achiral substituted acetylenes. Chemical Communications, 2012, 48, 4761.	2.2	34
83	Helix-Sense-Selective Polymerization of Achiral Phenylacetylenes with Two <i>N</i> -Alkylamide Groups to Generate the One-Handed Helical Polymers Stabilized by Intramolecular Hydrogen Bonds. ACS Macro Letters, 2012, 1, 1258-1261.	2.3	58
84	Two modes of asymmetric polymerization of phenylacetylenes having an <scp>L</scp> â€amino alcohol residue and two hydroxy groups. Journal of Polymer Science Part A, 2012, 50, 5134-5143.	2.5	10
85	Synthesis of Stable and Soluble One-Handed Helical Homopoly(substituted acetylene)s without the Coexistence of Any Other Chiral Moieties via Two-Step Polymer Reactions in Membrane State: Molecular Design of the Starting Monomer. Molecules, 2012, 17, 433-451.	1.7	7
86	Synthesis of stable and soluble one-handed helical poly(substituted acetylene)s without chiral pendant groups via polymer reaction in membrane state. Polymer, 2012, 53, 2129-2133.	1.8	11
87	Synthesis and helix-sense-selective polymerization of a novel phenylacetylene having a trisiloxanyl group and two hydroxyl groups and enantioselective permeability of the resulting chiral polymeric membrane: Effect of the trisiloxanyl group on the polymerization and enantioselective permeability. Polymer. 2010. 51, 2460-2464.	1.8	19
88	New Achiral Phenylacetylene Monomers Having an Oligosiloxanyl Group Most Suitable for Helix-Sense-Selective Polymerization and for Obtaining Good Optical Resolution Membrane Materials. Macromolecules, 2010, 43, 9268-9276.	2.2	59
89	Three Mechanisms of Asymmetric Polymerization of Phenylacetylenes Having an <scp>l</scp> -Amino Ether Residue and Two Hydroxy Groups. Macromolecules, 2010, 43, 8353-8362.	2.2	37
90	Phenyleneethynylene Macrocycleâ€Fused Phenylacetylene Monomers: Synthesis and Polymerization. Macromolecular Chemistry and Physics, 2009, 210, 22-36.	1.1	10

#	Article	IF	CITATIONS
91	Helix‧ense‧elective Polymerization of Achiral Bis(hydroxymethyl)phenylacetylenes Bearing Alkyl Groups of Different Lengths. Macromolecular Chemistry and Physics, 2009, 210, 717-727.	1.1	55
92	Optically active helical structure and magnetic interaction of poly(phenylacetylene)-based polyradicals. Polyhedron, 2009, 28, 1927-1929.	1.0	13
93	Two Modes of Asymmetric Polymerization of Phenylacetylene Having a l-Valinol Residue and Two Hydroxy Groups. Macromolecules, 2009, 42, 17-19.	2.2	37
94	Synthesis of poly(1,3-phenyleneethynylenes) membranes having one-handed helical conformation without any chiral side groups by in-situ desubstitution of d-menthoxy groups. Synthetic Metals, 2009, 159, 854-858.	2.1	11
95	Synthesis of an optically active poly(aryleneethynylene) bearing galvinoxyl residues and its chiroptical and magnetic properties. Synthetic Metals, 2009, 159, 864-867.	2.1	7
96	Copper(I) Iodide Accelerates Catalytic Activation in Rhodium Complex-catalyzed Helix-sense-selective Polymerization of Achiral Phenylacetylene Monomers. Chemistry Letters, 2008, 37, 390-391.	0.7	29
97	Enantioselective Permeability through Membranes from a Poly(substituted phenylacetylene) Having a Chiral Helical Backbone and Achiral Bidentate Ligands as Pendant Groups. Chemistry Letters, 2007, 36, 220-221.	0.7	37
98	Helix-Sense Tunability Induced by Achiral Diene Ligands in the Chiral Catalytic System for the Helix-Sense-Selective Polymerization of Achiral and Bulky Phenylacetylene Monomers. Macromolecules, 2007, 40, 7098-7102.	2.2	39
99	Synthesis of an optically active helical poly(1,3-phenyleneethynylene) bearing stable radicals and its chiroptical and magnetic properties. Polyhedron, 2007, 26, 1825-1829.	1.0	11
100	Synthesis of functional π-conjugated polymers from aromatic acetylenes. Polymer, 2006, 47, 4867-4892.	1.8	245
101	Synthesis of poly(phenylacetylene)-based polydendrons consisting of a phenyleneethynylene repeating unit, and oxygen/nitrogen permeation behavior of their membranes. Journal of Membrane Science, 2006, 278, 365-372.	4.1	27
102	Helix-sense-selective Polymerization of a Phenylacetylene Bearing an Achiral and Bulky Galvinoxyl Moiety. Chemistry Letters, 2005, 34, 854-855.	0.7	40
103	Preparation of chiral polystyrene monoliths by utilizing W/O emulsion polymerization and their optical resolution ability. Journal of Polymer Science Part A, 2005, 43, 2348-2357.	2.5	9
104	Synthesis of Chiral Helical Poly(hydroxyl-containing phenylacetylene) Membranes by in-Situ Depinanylsilylation and Their Enantioselective Permeabilities. Macromolecules, 2005, 38, 6367-6373.	2.2	84
105	New Macromolecular Architectures for Permselective Membranes—Gas Permselective Membranes from Dendrimers and Enantioselectively Permeable Membranes from One-handed Helical Polymers—. Polymer Journal, 2005, 37, 717-735.	1.3	100
106	Assignment of Helical Sense for Poly(phenylacetylene) Bearing Achiral Galvinoxyl Chromophore Synthesized by Helix-Sense-Selective Polymerization. Macromolecules, 2005, 38, 9420-9426.	2.2	75
107	Helix-sense-selective Polymerization of an Achiral Phenylacetylene. Kobunshi, 2004, 53, 946-946.	0.0	0
108	Role of chiral amine cocatalysts in the helix-sense-selective polymerization of a phenylacetylene using a catalytic system. Polymer, 2004, 45, 8109-8114.	1.8	44

#	Article	lF	CITATIONS
109	Synthesis of chiral helical poly[p-(oligopinanylsiloxanyl)phenylacetylene]s and enantioselective permeability of their membranes. Journal of Polymer Science Part A, 2004, 42, 4502-4517.	2.5	58
110	Synthesis and cation exchange properties of a new porous cation exchange resin having an open-celled monolith structure. Polymer, 2004, 45, 3-7.	1.8	43
111	Enantioselective Permeation through Membranes of Chiral Helical Polymers Prepared by Depinanylsilylation of Poly(diphenylacetylene) with a High Content of the Pinanylsilyl Group. Macromolecules, 2003, 36, 9694-9697.	2.2	95
112	Entropy Effect on Physical Displacement of Redox Molecules in a Nafion Film as Studied by Double Potential-Step Chronoabsorptometry. Journal of Physical Chemistry B, 2003, 107, 12662-12667.	1.2	7
113	Helix-Sense-Selective Polymerization of Phenylacetylene Having Two Hydroxy Groups Using a Chiral Catalytic System. Journal of the American Chemical Society, 2003, 125, 6346-6347.	6.6	317
114	Helical chirality of ?-conjugated main-chain induced by polymerization of phenylacetylene with chiral bulky pinanyl groups: Effects of the flexible spacer and polymerization catalyst. Journal of Polymer Science Part A, 2002, 40, 1689-1697.	2.5	41
115	Synthesis and stable high oxygen permeability of poly(diphenylacetylene)s with two or three trimethylsilyl groups. Polymer, 2002, 43, 1705-1709.	1.8	9
116	Syntheses and enantioselective recognition of chiral poly(phenyleneethynylene)s bearing bulky optically active menthyl groups. Polymer, 2001, 42, 351-355.	1.8	26
117	Pervaporation of nonaqueous ethanol azeotropes through interpenetrating polymer network membranes prepared from poly(4-vinylpyridine) and poly(vinyl alcohol). Journal of Applied Polymer Science, 2001, 82, 2729-2738.	1.3	12
118	Polymerization of Phenylacetylene-Based Monodendrons and Structure of the Corresponding Polydendrons Polymer Journal, 2001, 33, 879-890.	1.3	19
119	Polydendrons and polymacrocycles with phenyleneethynylene repeating unit. Polymers for Advanced Technologies, 2000, 11, 685-691.	1.6	8
120	Synthesis, characterization, and oxygen permeability of homo- and copolymers from p-[tris(trimethylsilyl)silyl]-phenylacetylene. Polymer Bulletin, 2000, 45, 215-221.	1.7	9
121	Macromolecular design of permselective membranes. Progress in Polymer Science, 1999, 24, 951-993.	11.8	133
122	Ï€-Conjugated Polyradicals Containing Anthracene Skeleton in the Backbone Chain. Molecular Crystals and Liquid Crystals, 1999, 334, 221-228.	0.3	9
123	Synthesis and Properties of Polymers from Disubstituted Acetylenes with Chiral Pinanyl Groups. Macromolecules, 1999, 32, 79-85.	2.2	119
124	Synthesis of an Optically Active Poly(phenylacetylene) Bearing Galvinoxyl Radicals for Magnetic Materials. Chemistry Letters, 1999, 28, 623-624.	0.7	25
125	Pervaporation and solute separation through semi-interpenetrating and interpenetrating polymer network membranes prepared from poly(4-vinylpyridine) and poly(glycidyl methacrylate). Journal of Applied Polymer Science, 1998, 69, 1953-1963.	1.3	5
126	Polydendron:Â Polymerization of Dendritic Phenylacetylene Monomers. Macromolecules, 1997, 30, 3118-3121.	2.2	94

#	Article	IF	CITATIONS
127	Enantioselective Permeation of Various Racemates through an Optically Active Poly{1-[dimethyl(10-pinanyl)silyl]-1-propyne} Membrane. Macromolecules, 1996, 29, 4192-4198.	2.2	137
128	Highly Oxygen Permselective Membrane of Cobalt-Complexed Polyazomethine Containing Tridentate Ligand and Oligosiloxane in the Repeating Pairs of the Main Chain. Polymer Journal, 1996, 28, 106-112.	1.3	8
129	Macromolecular Design for Optical Resolution Membrane Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1996, 54, 525-536.	0.0	6
130	Highly oxygen permselective membrane prepared from cobalt-complexed polyazomethine containing a ligand and a tri- or tetrasiloxane in the main chain. Macromolecular Rapid Communications, 1995, 16, 599-606.	2.0	10
131	Synthesis of pyridine-moieties-containing poly(acylhydrazone)s and solute separation through their membranes. Journal of Applied Polymer Science, 1995, 58, 1205-1219.	1.3	17
132	Optical resolution by vapour permeation of 1,3-butanediol and 2-butanol through (+)-poly1- [dimethyl(10-pinanyl)silyl]-1-propyne membrane. Polymer, 1995, 36, 2403-2405.	1.8	60
133	Poly(p-substituted phenylacetylene) with perfluoroalkyloxydimethylsilyl side groups for oxygen and ethanol permselective membrane. Polymer Bulletin, 1995, 34, 133-140.	1.7	13
134	Enantioselective permeation through poly[γ-[3-(pentamethyldisiloxanyl)propyl]-l-glutamate] membranes. Journal of Membrane Science, 1995, 99, 117-125.	4.1	81
135	Optical Resolution by Use of Surface-Modified Poly(methyl methacrylate) Membrane Containing (–)-Oligo{methyl(10-pinanyl)siloxane}. Polymer Journal, 1995, 27, 547-550.	1.3	32
136	Trimethylsilyl-group containing polyphenylacetylenes for oxygen and ethanol permselective membranes. Journal of Polymer Science Part A, 1994, 32, 849-858.	2.5	63
137	Synthesis of Poly [p-(1H,1H,2H,2H-perfluoroalkyl-oxyoligosiloxanyl)styrene]s and Oxygen Permselectivity of Their Membranes. Polymer Journal, 1994, 26, 1142-1153.	1.3	6
138	Synthesis and properties of poly(thioether amide)s from 2,6-bis(acrylamido)pyridine and dithiols. Journal of Polymer Science Part A, 1993, 31, 457-465.	2.5	12
139	1,5-Dichlorohexamethyltrisiloxane as a Modifier of Membranes of Oligosiloxane-Containing Polyamides. Polymer Journal, 1993, 25, 309-313.	1.3	2
140	Chiral Helical Conformation of the Polyphenylacetylene Having Optically-Active Bulky Substituent. Chemistry Letters, 1993, 22, 2009-2012.	0.7	153
141	Synthesis of poly(phenylacetylene)s containing trifluoromethyl groups for gas permeable membrane. Journal of Polymer Science Part A, 1992, 30, 873-877.	2.5	27
142	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 525-530.	1.1	12
143	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 565-570.	1.1	56

Improvement of oxygen permselectivity through polydimethylsiloxane and poly(1-trimethylsilylpropyne) films by the addition of a small amount of poly(trifluoromethyl) Tj ETQq0 0 0 rgBT /Overlock 10 IFf 50 57 To 144

#	Article	IF	CITATIONS
145	Enhancement of oxygen permselectivity of polydimethylsiloxane-b-polycarbonate film by the surface modification with fluorine-containing polymer. Polymer Bulletin, 1987, 17, 293.	1.7	13
146	Enhanced Oxygen Permeation through Surface Modified Blend Films Containing Polydimethylsiloxane Graft Copolymers. Polymer Journal, 1986, 18, 243-248.	1.3	25
147	The Role of p-Oligosiloxane Substituents of Polystyrene in Selective Oxygen Permeation through the Polymer Film. Polymer Journal, 1986, 18, 237-241.	1.3	39
148	Surface modification of poly(methyl methacrylate) film by siloxane graft copolymers. Macromolecules, 1985, 18, 580-582.	2.2	39