Jinxiang Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3610052/publications.pdf Version: 2024-02-01

ΙΝΥΙΑΝΟ ΧΙ

#	Article	IF	CITATIONS
1	Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of the Oral Airway. Annals of Biomedical Engineering, 2007, 35, 560-581.	1.3	229
2	Effectiveness of Direct Lagrangian Tracking Models for Simulating Nanoparticle Deposition in the Upper Airways. Aerosol Science and Technology, 2007, 41, 380-397.	1.5	206
3	Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. Journal of Applied Physiology, 2008, 104, 1761-1777.	1.2	167
4	Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. International Journal of Heat and Mass Transfer, 2008, 51, 5562-5577.	2.5	154
5	Condensational Growth May Contribute to the Enhanced Deposition of Cigarette Smoke Particles in the Upper Respiratory Tract. Aerosol Science and Technology, 2008, 42, 579-602.	1.5	108
6	Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth–throat geometry. Journal of Aerosol Science, 2008, 39, 572-591.	1.8	103
7	Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. Journal of Aerosol Science, 2007, 38, 111-130.	1.8	94
8	Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. Journal of Aerosol Science, 2011, 42, 156-173.	1.8	91
9	Effects of Oral Airway Geometry Characteristics on the Diffusional Deposition of Inhaled Nanoparticles. Journal of Biomechanical Engineering, 2008, 130, 011008.	0.6	82
10	Breathing Resistance and Ultrafine Particle Deposition in Nasal–Laryngeal Airways of a Newborn, an Infant, a Child, and an Adult. Annals of Biomedical Engineering, 2012, 40, 2579-2595.	1.3	70
11	Modeling of release position and ventilation effects on olfactory aerosol drug delivery. Respiratory Physiology and Neurobiology, 2013, 186, 22-32.	0.7	64
12	Growth of Nasal and Laryngeal Airways in Children: Implications in Breathing and Inhaled Aerosol Dynamics. Respiratory Care, 2014, 59, 263-273.	0.8	63
13	Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast. Pharmaceutical Research, 2016, 33, 1527-1541.	1.7	63
14	Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5â€yearâ€old child. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 17-39.	1.0	60
15	Parametric study on mouth–throat geometrical factors on deposition of orally inhaled aerosols. Journal of Aerosol Science, 2016, 99, 94-106.	1.8	51
16	Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway. Physics of Fluids, 2020, 32, 123312.	1.6	51
17	Characterization of Submicrometer Aerosol Deposition in Extrathoracic Airways during Nasal Exhalation. Aerosol Science and Technology, 2009, 43, 808-827.	1.5	49
18	In Vitro Evaluation of Aerosols Delivered via the Nasal Route. Respiratory Care, 2015, 60, 1015-1025.	0.8	49

#	Article	IF	CITATIONS
19	Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways. Pharmaceutics, 2014, 6, 26-35.	2.0	48
20	Hood Nebulization: Effects of Head Direction and Breathing Mode on Particle Inhalability and Deposition in a 7-Month-Old Infant Model. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 209-218.	0.7	43
21	Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. International Journal of Nanomedicine, 2015, 10, 1211.	3.3	43
22	Evaluation of a Drift Flux Model for Simulating Submicrometer Aerosol Dynamics in Human Upper Tracheobronchial Airways. Annals of Biomedical Engineering, 2008, 36, 1714-1734.	1.3	42
23	Aerosol Deposition in a Nasopharyngolaryngeal Replica of a 5-Year-Old Child. Aerosol Science and Technology, 2013, 47, 275-282.	1.5	40
24	Electrophoretic Particle Guidance Significantly Enhances Olfactory Drug Delivery: A Feasibility Study. PLoS ONE, 2014, 9, e86593.	1.1	39
25	Computational modeling of aerosol transport, dispersion, and deposition in rhythmically expanding and contracting terminal alveoli. Journal of Aerosol Science, 2017, 112, 19-33.	1.8	36
26	Nasal Deposition in Infants and Children. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 110-116.	0.7	35
27	Effects of nostril orientation on airflow dynamics, heat exchange, and particle depositions in human noses. European Journal of Mechanics, B/Fluids, 2016, 55, 215-228.	1.2	35
28	Effects of glottis motion on airflow and energy expenditure in a human upper airway model. European Journal of Mechanics, B/Fluids, 2018, 72, 23-37.	1.2	35
29	Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound. Medical and Biological Engineering and Computing, 2014, 52, 567-577.	1.6	32
30	Nasal and Olfactory Deposition with Normal and Bidirectional Intranasal Delivery Techniques: <i>In Vitro</i> Tests and Numerical Simulations. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2017, 30, 118-131.	0.7	32
31	Hygroscopic aerosol deposition in the human upper respiratory tract under various thermo-humidity conditions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1790-1805.	0.9	31
32	Modeling of inertial deposition in scaled models of rat and human nasal airways: Towards in vitro regional dosimetry in small animals. Journal of Aerosol Science, 2016, 99, 78-93.	1.8	31
33	Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. European Journal of Pharmaceutical Sciences, 2018, 118, 113-123.	1.9	31
34	Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction. Anatomical Record, 2016, 299, 853-868.	0.8	30
35	CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases. Theranostics, 2015, 5, 443-455.	4.6	28
36	SARS COV-2 virus-laden droplets coughed from deep lungs: Numerical quantification in a single-path whole respiratory tract geometry. Physics of Fluids, 2021, 33, 023306.	1.6	26

#	Article	IF	CITATIONS
37	Nasally inhaled therapeutics and vaccination for COVIDâ€19: Developments and challenges. MedComm, 2021, 2, 569-586.	3.1	26
38	Computational analysis of a flapping uvula on aerodynamics and pharyngeal wall collapsibility in sleep apnea. Journal of Biomechanics, 2019, 94, 88-98.	0.9	25
39	Effect of Laryngopharyngeal Anatomy on Expiratory Airflow and Submicrometer Particle Deposition in Human Extrathoracic Airways. Open Journal of Fluid Dynamics, 2013, 03, 286-301.	0.3	24
40	Diagnosing obstructive respiratory diseases using exhaled aerosol fingerprints: A feasibility study. Journal of Aerosol Science, 2013, 64, 24-36.	1.8	23
41	Understanding the mechanisms underlying pulsating aerosol delivery to the maxillary sinus: In vitro tests and computational simulations. International Journal of Pharmaceutics, 2017, 520, 254-266.	2.6	22
42	Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model. Sleep and Breathing, 2018, 22, 463-479.	0.9	22
43	Radiation Dosimetry of Inhaled Radioactive Aerosols: CFPD and MCNP Transport Simulations of Radionuclides in the Lung. Scientific Reports, 2019, 9, 17450.	1.6	22
44	Correlating exhaled aerosol images to small airway obstructive diseases: A study with dynamic mode decomposition and machine learning. PLoS ONE, 2019, 14, e0211413.	1.1	21
45	Visualization of local deposition of nebulized aerosols in a human upper respiratory tract model. Journal of Visualization, 2018, 21, 225-237.	1.1	20
46	Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis. PLoS ONE, 2014, 9, e104682.	1.1	20
47	Detecting Lung Diseases from Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification. PLoS ONE, 2015, 10, e0139511.	1.1	20
48	Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis. International Journal of Nanomedicine, 2015, 10, 4847.	3.3	18
49	Simulation study of electric-guided delivery of 0.4µm monodisperse and polydisperse aerosols to the ostiomeatal complex. Computers in Biology and Medicine, 2016, 72, 1-12.	3.9	17
50	Design and Testing of Electric-Guided Delivery of Charged Particles to the Olfactory Region: Experimental and Numerical Studies. Current Drug Delivery, 2016, 13, 265-274.	0.8	17
51	Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model. Biomechanics and Modeling in Mechanobiology, 2016, 15, 877-891.	1.4	16
52	Sensitivity Analysis and Uncertainty Quantification in Pulmonary Drug Delivery of Orally Inhaled Pharmaceuticals. Journal of Pharmaceutical Sciences, 2017, 106, 3303-3315.	1.6	16
53	Nanoparticle Deposition in Rhythmically Moving Acinar Models with Interalveolar Septal Apertures. Nanomaterials, 2019, 9, 1126.	1.9	16
54	A new approach to estimate ultrafine particle respiratory deposition. Inhalation Toxicology, 2019, 31, 35-43.	0.8	15

#	Article	IF	CITATIONS
55	Variability in oropharyngeal airflow and aerosol deposition due to changing tongue positions. Journal of Drug Delivery Science and Technology, 2019, 49, 674-682.	1.4	15
56	Effect of MDI Actuation Timing on Inhalation Dosimetry in a Human Respiratory Tract Model. Pharmaceuticals, 2022, 15, 61.	1.7	15
57	Estimation of the deposition of ultrafine 3D printing particles in human tracheobronchial airways. Journal of Aerosol Science, 2020, 149, 105605.	1.8	14
58	Inspiratory leakage flow fraction for surgical masks with varying gaps and filter materials. Physics of Fluids, 2022, 34, .	1.6	14
59	Liquid Film Translocation Significantly Enhances Nasal Spray Delivery to Olfactory Region: A Numerical Simulation Study. Pharmaceutics, 2021, 13, 903.	2.0	12
60	Effects of the facial interface on inhalation and deposition of micrometer particles in calm air in a child airway model. Inhalation Toxicology, 2014, 26, 492-505.	0.8	11
61	Multi-resolution classification of exhaled aerosol images to detect obstructive lung diseases in small airways. Computers in Biology and Medicine, 2017, 87, 57-69.	3.9	11
62	Deposition of bolus and continuously inhaled aerosols in rhythmically moving terminal alveoli. Journal of Computational Multiphase Flows, 2018, 10, 178-193.	0.8	11
63	Alveolar size effects on nanoparticle deposition in rhythmically expanding-contracting terminal alveolar models. Computers in Biology and Medicine, 2020, 121, 103791.	3.9	10
64	Micrometer aerosol deposition in normal and emphysematous subacinar models. Respiratory Physiology and Neurobiology, 2021, 283, 103556.	0.7	10
65	Airflow and Particle Deposition in Acinar Models with Interalveolar Septal Walls and Different Alveolar Numbers. Computational and Mathematical Methods in Medicine, 2018, 2018, 1-18.	0.7	9
66	The application of statistical shape modeling for lung morphology in aerosol inhalation dosimetry. Journal of Aerosol Science, 2021, 151, 105623.	1.8	9
67	Leveraging statistical shape modeling in computational respiratory dynamics: Nanomedicine delivery in remodeled airways. Computer Methods and Programs in Biomedicine, 2021, 204, 106079.	2.6	9
68	Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols. Journal of Visualized Experiments, 2016, , .	0.2	8
69	Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting. International Journal of Rotating Machinery, 2006, 2006, 1-11.	0.8	7
70	Evaluation of Impulse Oscillometry in Respiratory Airway Casts with Varying Obstruction Phenotypes, Locations, and Complexities. Journal of Respiration, 2022, 2, 44-58.	0.4	7
71	Inhalation dosimetry of nasally inhaled respiratory aerosols in the human respiratory tract with locally remodeled conducting lungs. Inhalation Toxicology, 2021, 33, 143-159.	0.8	6
72	Development and Challenges of Nasal Spray Vaccines for Short-term COVID-19 Protection. Current Pharmaceutical Biotechnology, 2022, 23, 1671-1677.	0.9	6

#	Article	lF	CITATIONS
73	Ventilation Modulation and Nanoparticle Deposition in Respiratory and Olfactory Regions of Rabbit Nose. Animals, 2019, 9, 1107.	1.0	5
74	Deciphering Exhaled Aerosol Fingerprints for Early Diagnosis and Personalized Therapeutics of Obstructive Respiratory Diseases in Small Airways. Journal of Nanotheranostics, 2021, 2, 94-117.	1.7	5
75	Effects of Improved Near-Wall Modeling on Micro-Particle Deposition in Oral Airway Geometries. , 2007, , .		5
76	Rotordynamics of Impeller Eye Seals with Wear-Damaged Teeth in Centrifugal Compressors. Tribology Transactions, 2006, 49, 328-337.	1.1	4
77	Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses. International Journal of Molecular Sciences, 2018, 19, 997.	1.8	4
78	Olfactory Drug Aerosol Delivery with Acoustic Radiation. Biomedicines, 2022, 10, 1347.	1.4	4
79	Seal-Inlet Disturbance Boundary Condition Correlations for Rotordynamics Models, Part 2: Assessment. Tribology Transactions, 2006, 49, 584-591.	1.1	3
80	Extracting signature responses from respiratory flows: Lowâ€dimensional analyses on Direct Numerical Simulationâ€predicted wakes of a flapping uvula. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3406.	1.0	3
81	A comparison of CFPD, compartment, and uniform distribution models for radiation dosimetry of radionuclides in the lung. Journal of Radiological Protection, 2021, 41, .	0.6	3
82	Lower Inspiratory Breathing Depth Enhances Pulmonary Delivery Efficiency of ProAir Sprays. Pharmaceuticals, 2022, 15, 706.	1.7	3
83	Count- and mass-based dosimetry of MDI spray droplets with polydisperse and monodisperse size distributions. International Journal of Pharmaceutics, 2022, 623, 121920.	2.6	3
84	Seal-Inlet Disturbance Boundary Condition Correlations for Rotordynamics Models, Part 1: Correlation Development. Tribology Transactions, 2006, 49, 574-583.	1.1	2
85	Septal destruction enhances chaotic mixing and increases cellular doses of nanoparticles in emphysematous acinus. Nano Express, 2021, 2, 010015.	1.2	2
86	Reconciling Oxygen and Aerosol Delivery with a Hood on In Vitro Infant and Paediatric Models. Pharmaceutics, 2022, 14, 91.	2.0	2
87	Influence of Rotor Axial Thermal Growth on Rotordynamic Forces of High-Low Labyrinth Seals in Steam Turbines. , 2005, , 113.		0
88	Curvature Law of the Wall for Swirling Axial Flows in Rotating Machinery. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 169-178.	0.8	0
89	Reducing Scale Deposition by Surface Modification and Magnetic Water Treatment. , 2009, ,		0
90	The Study of Calcium Carbonate Scaling on Low Energy Surfaces. , 2010, , .		0

#	Article	IF	CITATIONS
91	Curvature Law of the Wall for Swirling Axial Flows. , 2005, , .		Ο
92	Influence of Teeth Damage on Rotordynamic Instability of Impeller Eye Seals in Centrifugal Compressors. , 2005, , .		0