Rupesh kumar singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3610012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology, 2021, 10, 267.	2.8	228
2	A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants, 2020, 9, 398.	5.1	121
3	Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology, 2021, 10, 791.	2.8	92
4	Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasma, 2011, 248, 839-847.	2.1	52
5	Nanotechnology in the Restoration of Polluted Soil. Nanomaterials, 2022, 12, 769.	4.1	49
6	Role of Engineered Carbon Nanoparticles (CNPs) in Promoting Growth and Metabolism of Vigna radiata (L.) Wilczek: Insights into the Biochemical and Physiological Responses. Plants, 2021, 10, 1317.	3.5	42
7	Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Reports, 2011, 30, 1019-1028.	5.6	38
8	Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. Acta Physiologiae Plantarum, 2010, 32, 205-210.	2.1	36
9	Recent Development in Micropropagation Techniques for Rare Plant Species. Plants, 2020, 9, 1733.	3.5	33
10	Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. Plants, 2021, 10, 2163.	3.5	31
11	Chitosan Upregulates the Genes of the ROS Pathway and Enhances the Antioxidant Potential of Grape (Vitis vinifera L. †Touriga Franca' and 'Tinto Cão') Tissues. Antioxidants, 2019, 8, 525.	5.1	30
12	Comparative Insight upon Chitosan Solution and Chitosan Nanoparticles Application on the Phenolic Content, Antioxidant and Antimicrobial Activities of Individual Grape Components of Sousão Variety. Antioxidants, 2020, 9, 178.	5.1	29
13	Chitosan Application in Vineyards (Vitis vinifera L. cv. Tinto Cão) Induces Accumulation of Anthocyanins and Other Phenolics in Berries, Mediated by Modifications in the Transcription of Secondary Metabolism Genes. International Journal of Molecular Sciences, 2020, 21, 306.	4.1	27
14	Zinc Oxide Nanoparticles Improve Salt Tolerance in Rice Seedlings by Improving Physiological and Biochemical Indices. Agriculture (Switzerland), 2022, 12, 1014.	3.1	27
15	Agrobacterium mediated genetic transformation of summer squash (Cucurbita pepo L. cv. Australian) Tj ETQq1	1 0 <u>7</u> 8431	l4 rgβT /Ov€r 21
16	Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem. Plants, 2021, 10, 1022.	3.5	21
17	Advances in Entomopathogen Isolation: A Case of Bacteria and Fungi. Microorganisms, 2021, 9, 16.	3.6	15

Silicates of Potassium and Aluminium (Kaolin); Comparative Foliar Mitigation Treatments and Biochemical Insight on Grape Berry Quality in Vitis vinifera L. (cv. Touriga National and Touriga) Tj ETQq0 0 0 rgBT /0.8erlock 114 Tf 50 57 18

1

#	Article	IF	CITATIONS
19	Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth. Plants, 2021, 10, 2080.	3.5	13
20	Transformation Techniques and Their Role in Crop Improvements: A Global Scenario of GM Crops. , 2021, , 515-542.		9
21	An efficient protocol for in vitro propagation of the wild legume Cicer microphyllum Benth., a crop wild relative of chickpea (Cicer arietinum L.). In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 9-14.	2.1	8
22	Overexpression of polygalacturonase-inhibiting protein (PGIP) gene from Hypericum perforatum alters expression of multiple defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens in tobacco. Journal of Plant Physiology, 2020, 253, 153268.	3.5	8
23	Construction of cold induced subtracted cDNA library from Cicer microphyllum and transcript characterization of identified novel wound induced gene. Protoplasma, 2013, 250, 459-469.	2.1	7
24	First Demonstration of Clinical Fusarium Strains Causing Cross-Kingdom Infections from Humans to Plants. Microorganisms, 2020, 8, 947.	3.6	7
25	Valorizing faba bean for animal feed supplements via biotechnological approach: Opinion. Biocatalysis and Agricultural Biotechnology, 2019, 17, 366-368.	3.1	6
26	Effect of Soil Chemical Properties on the Occurrence and Distribution of Entomopathogenic Fungi in Portuguese Grapevine Fields. Pathogens, 2021, 10, 137.	2.8	6
27	Validation of meta-Topolin in organogenesis, improved morpho-physio-chemical responses, and clonal fidelity analysis in Dioscorea pentaphylla L. – an underutilized yam species. South African Journal of Botany, 2022, 145, 284-292.	2.5	6
28	Transgenic expression of Hyp-1 gene from Hypericum perforatum L. alters expression of defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens. Planta, 2020, 251, 13.	3.2	5
29	Construction of Hypericin Gland-Specific cDNA Library via Suppression Subtractive Hybridization. Methods in Molecular Biology, 2016, 1391, 317-334.	0.9	3
30	A Global Screening Assay to Select for Maize Phenotypes with a High Tolerance or Resistance to Fusarium verticillioides (Sacc.) Nirenberg Rots. Agronomy, 2020, 10, 1990.	3.0	3
31	Transcriptional responses of Hypericum perforatum cells to Agrobacterium tumefaciens and differential gene expression in dark glands. Functional Plant Biology, 2021, 48, 936.	2.1	3
32	Somatic Embryogenesis in Jatropha curcas. , 2016, , 401-412.		1
33	Status and Policies of GM Crops in Russia. , 2021, , 57-74.		1
34	Potential of Entomopathogenic Bacteria and Fungi. Sustainability in Plant and Crop Protection, 2019, , 115-149.	0.4	1
35	Inspection of Crop Wild Relative (Cicer microphyllum) as Potential Genetic Resource in Transgenic Development. , 2019, , 253-272.		1

Recent Developments in Generation of Marker-Free Transgenic Plants. , 2019, , 127-142.

Nanomaterials for Plants: From Ecophysiology to Signaling Mechanisms and Nutrient Uptake. , 2022, ,	#	Article	CITATIONS
³⁷ 183-197.	37	Nanomaterials for Plants: From Ecophysiology to Signaling Mechanisms and Nutrient Uptake. , 2022, , 183-197.	1

38 Metabolites Differentiating Asymptomatic and Symptomatic Grapevine Plants (Vitis vinifera) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 702 T

39 Advances in Genome Editing. , 2021, , 227-240.