Laura Bracci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3609651/publications.pdf

Version: 2024-02-01

44 papers

4,866 citations

304368

22

h-index

288905 40 g-index

45 all docs 45 docs citations

45 times ranked

9028 citing authors

#	Article	IF	Citations
1	Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19. Cytokine and Growth Factor Reviews, 2022, 63, 23-33.	3.2	7
2	Immunomodulatory properties of CNF1 toxin from : implications for colorectal carcinogenesis American Journal of Cancer Research, 2022, 12, 651-660.	1.4	0
3	Anticancer Effects of Sublingual Type I IFN in Combination with Chemotherapy in Implantable and Spontaneous Tumor Models. Cells, 2021, 10, 845.	1.8	4
4	Dietary Polyphenols: Promising Adjuvants for Colorectal Cancer Therapies. Cancers, 2021, 13, 4499.	1.7	18
5	Antiviral and immunomodulatory interferon-beta in high-risk COVID-19 patients: a structured summary of a study protocol for a randomised controlled trial. Trials, 2021, 22, 584.	0.7	3
6	The role of exosomes in colorectal cancer disease progression and response to therapy. Cytokine and Growth Factor Reviews, 2020, 51, 84-91.	3.2	19
7	Towards a Systems Immunology Approach to Unravel Responses to Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 582744.	2.2	9
8	Are we fully exploiting type I Interferons in today's fight against COVID-19 pandemic?. Cytokine and Growth Factor Reviews, 2020, 54, 43-50.	3.2	19
9	Tumor-Intrinsic or Drug-Induced Immunogenicity Dictates the Therapeutic Success of the PD1/PDL Axis Blockade. Cells, 2020, 9, 940.	1.8	8
10	Enzyme-linked immunospot assay to monitor antigen-specific cellular immune responses in mouse tumor models. Methods in Enzymology, 2020, 632, 457-477.	0.4	4
11	The added value of type I interferons to cytotoxic treatments of cancer. Cytokine and Growth Factor Reviews, 2017, 36, 89-97.	3.2	25
12	Combining Type I Interferons and 5-Aza-2′-Deoxycitidine to Improve Anti-Tumor Response against Melanoma. Journal of Investigative Dermatology, 2017, 137, 159-169.	0.3	60
13	Negatively charged gold nanoparticles as a dexamethasone carrier: stability in biological media and bioactivity assessment in vitro. RSC Advances, 2016, 6, 99016-99022.	1.7	39
14	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
15	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
16	Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death and Differentiation, 2014, 21, 15-25.	5.0	740
17	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	15.2	823
18	Exploiting dendritic cells in the development of cancer vaccines. Expert Review of Vaccines, 2013, 12, 1195-1210.	2.0	15

#	Article	IF	CITATIONS
19	Cyclophosphamide Synergizes with Type I Interferons through Systemic Dendritic Cell Reactivation and Induction of Immunogenic Tumor Apoptosis. Cancer Research, 2011, 71, 768-778.	0.4	304
20	Strong CD8+ T cell antigenicity and immunogenicity of large foreign proteins incorporated in HIV-1 VLPs able to induce a Nef-dependent activation/maturation of dendritic cells. Vaccine, 2011, 29, 3465-3475.	1.7	17
21	Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Seminars in Immunopathology, 2011, 33, 369-383.	2.8	265
22	Type I IFNs Control Antigen Retention and Survival of CD8 \hat{l}_{\pm} + Dendritic Cells after Uptake of Tumor Apoptotic Cells Leading to Cross-Priming. Journal of Immunology, 2011, 186, 5142-5150.	0.4	110
23	A HCMV pp65 polypeptide promotes the expansion of CD4 ⁺ and CD8 ⁺ T cells across a wide range of HLA specificities. Journal of Cellular and Molecular Medicine, 2009, 13, 2131-2147.	1.6	10
24	Chemotherapy enhances vaccineâ€induced antitumor immunity in melanoma patients. International Journal of Cancer, 2009, 124, 130-139.	2.3	103
25	Type I IFN regulate DC turnover <i>in vivo</i> . European Journal of Immunology, 2009, 39, 1807-1818.	1.6	31
26	Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Annals of the Rheumatic Diseases, 2009, 68, 1352-1359.	0.5	38
27	Differential Responsiveness to IL-2, IL-7, and IL-15 Common Receptor Î ³ Chain Cytokines by Antigen-specific Peripheral Blood Naive or Memory Cytotoxic CD8+ T Cells From Healthy Donors and Melanoma Patients. Journal of Immunotherapy, 2009, 32, 252-261.	1.2	11
28	Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Review of Vaccines, 2008, 7, 373-381.	2.0	47
29	Efficient Stimulation of T Cell Responses by Human IFN-α–induced Dendritic Cells Does Not Require Toll-like Receptor Triggering. Journal of Immunotherapy, 2008, 31, 466-474.	1.2	10
30	Cyclophosphamide Enhances the Antitumor Efficacy of Adoptively Transferred Immune Cells through the Induction of Cytokine Expression, B-Cell and T-Cell Homeostatic Proliferation, and Specific Tumor Infiltration. Clinical Cancer Research, 2007, 13, 644-653.	3.2	228
31	Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology, 2007, 46, 403-408.	0.9	183
32	Ca2+ signaling through ryanodine receptor 1 enhances maturation and activation of human dendritic cells. Journal of Cell Science, 2007, 120, 2232-2240.	1.2	19
33	Ca2+ signaling through ryanodine receptor 1 enhances maturation and activation of human dendritic cells. Journal of Cell Science, 2007, 120, 2468-2468.	1.2	2
34	IFN-Â and Novel Strategies of Combination Therapy for Cancer. Annals of the New York Academy of Sciences, 2007, 1112, 256-268.	1.8	22
35	Characterization of highly frequent epitope-specific CD45RA+/CCR7+/- T lymphocyte responses against p53-binding domains of the human polyomavirus BK large tumor antigen in HLA-A*0201+ BKV-seropositive donors. Journal of Translational Medicine, 2006, 4, 47.	1.8	33
36	MHC–peptide specificity and T-cell epitope mapping: where immunotherapy starts. Trends in Molecular Medicine, 2006, 12, 465-472.	3.5	25

#	Article	IF	CITATION
37	Type I IFN as a vaccine adjuvant for both systemic and mucosal vaccination against influenza virus. Vaccine, 2006, 24, S56-S57.	1.7	33
38	Enhancement of vaccine-mediated antitumor immunity in melanoma patients by dacarbazine treatment. Melanoma Research, 2006, 16, S40-S41.	0.6	0
39	Clinical applications of virosomes in cancer immunotherapy. Expert Opinion on Biological Therapy, 2006, 6, 1113-1121.	1.4	16
40	BKV Large Tag-Derived Peptides for Immunological Interventions in Prostate Cancer. Journal of Immunotherapy, 2005, 28, 646.	1.2	0
41	Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine, 2005, 23, 2994-3004.	1.7	88
42	Comprehensive Analysis of CD8 T Cell Immune Response Specific for Two Novel HLA-A*0201 Restriced CMV pp65 Peptides Blood, 2005, 106, 3928-3928.	0.6	0
43	Type I IFN as a Natural Adjuvant for a Protective Immune Response: Lessons from the Influenza Vaccine Model. Journal of Immunology, 2002, 169, 375-383.	0.4	208
44	Cyclophosphamide induces type I interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood, 2000, 95, 2024-2030.	0.6	189