Fabio Maroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3609262/publications.pdf Version: 2024-02-01

FARIO MADONI

#	Article	IF	CITATIONS
1	Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications. Journal of Power Sources, 2014, 269, 873-882.	4.0	106
2	V ₂ O ₅ Aerogel as a Versatile Cathode Material for Lithium and Sodium Batteries. ChemElectroChem, 2015, 2, 529-537.	1.7	74
3	Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application. Journal of Power Sources, 2015, 294, 248-253.	4.0	38
4	High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder. Journal of Power Sources, 2016, 332, 79-87.	4.0	33
5	Through the Maze of Multivalentâ€lon Batteries: A Critical Review on the Status of the Research on Cathode Materials for Mg ²⁺ and Ca ²⁺ lons Insertion. Batteries and Supercaps, 2021, 4, 1221-1251.	2.4	24
6	Electrochemical and spectroscopic characterization of an alumina-coated LiMn2O4 cathode with enhanced interfacial stability. Electrochimica Acta, 2017, 258, 175-181.	2.6	22
7	Novel MIPs-Parabens based SPE Stationary Phases Characterization and Application. Molecules, 2019, 24, 3334.	1.7	18
8	Electrochemical Response and Structural Stability of the Li ⁺ Ion Battery Cathode with Coated LiMn ₂ O ₄ Nanoparticles. ACS Applied Energy Materials, 2020, 3, 8356-8365.	2.5	18
9	Graphene/V ₂ O ₅ Cryogel Composite As a Highâ€Energy Cathode Material For Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 613-619.	1.7	17
10	Synthesis and characterization of Si nanoparticles wrapped by V2O5 nanosheets as a composite anode material for lithium-ion batteries. Electrochimica Acta, 2018, 281, 676-683.	2.6	16
11	Comparison between Exhaustive and Equilibrium Extraction Using Different SPE Sorbents and Sol-Gel Carbowax 20M Coated FPSE Media. Molecules, 2019, 24, 382.	1.7	16
12	Does Alumina Coating Alter the Solid Permeable Interphase Dynamics in LiMn ₂ O ₄ Cathodes?. Journal of Physical Chemistry C, 2020, 124, 26670-26677.	1.5	15
13	Anatase TiO ₂ as a Cheap and Sustainable Buffering Filler for Silicon Nanoparticles in Lithiumâ€ion Battery Anodes. ChemSusChem, 2017, 10, 4771-4777.	3.6	14
14	Synthesis and Characterization of Vanillinâ€Templated Fe ₂ O ₃ Nanoparticles as a Sustainable Anode Material for Liâ€ion Batteries. ChemElectroChem, 2019, 6, 1915-1920.	1.7	12
15	Fe3O4/Graphene Composite Anode Material for Fast-Charging Li-Ion Batteries. Molecules, 2021, 26, 4316.	1.7	11
16	Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75Oï¤s Electrode Materials for Sodium-Ion Batteries. Materials, 2019, 12, 1074.	1.3	10
17	Highly Stable Fe ₃ O ₄ /C Composite: A Candidate Material for All Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070556.	1.3	10
18	V2O5 electrodes with extended cycling ability and improved rate performance using polyacrylic acid as binder. Journal of Power Sources, 2015, 293, 1068-1072.	4.0	9

Fabio Maroni

#	Article	IF	CITATIONS
19	A lithium-ion battery based on LiFePO4 and silicon/reduced graphene oxide nanocomposite. Solid State Ionics, 2015, 283, 145-151.	1.3	9
20	Preparation and Electrochemical Characterization of High-Stability MnO Anodes for Li-Ion Batteries. Electrochimica Acta, 2017, 247, 392-399.	2.6	8
21	A high-voltage lithium-ion battery prepared using a Sn-decorated reduced graphene oxide anode and a LiNi0.5Mn1.5O4 cathode. Ionics, 2016, 22, 515-528.	1.2	7
22	Electrospun tin-carbon nanocomposite as anode material for all solid state lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1697-1703.	1.2	7
23	Electrospun Carbon/Cu _{<i>x</i>} O Nanocomposite material as Sustainable and High Performance Anode for Lithiumâ€ion Batteries. ChemistryOpen, 2019, 8, 781-787.	0.9	3
24	On the Electrochemical Insertion of Mg ²⁺ in Na ₇ V ₄ (P ₂ O ₇) ₄ (PO ₄) and Na ₃ V ₂ (PO ₄) ₃ Host Materials. Journal of the Electrochemical Society, 2021, 168, 120541.	1.3	3
25	V ₂ O ₅ Cryogel: A Versatile Electrode for All Solid State Lithium Batteries. Journal of the Electrochemical Society, 2019, 166, A3927-A3931.	1.3	2