
## Toshimichi Ohmura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3609168/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthesis of Disilanes, Dihydrosiloles, and 1,4â€Disilacyclohexaâ€2,5â€dienes by Transitionâ€Metalâ€Free<br>Transfer of Diphenylsilylene and Dimethylsilylene from Silylboronic Esters. European Journal of<br>Organic Chemistry, 2022, 2022, .          | 1.2 | 2         |
| 2  | Iridium-catalyzed Enantioselective Intramolecular Cross-dehydrogenative Coupling of Alkyl Aryl<br>Ethers Giving Enantioenriched 2,3-Dihydrobenzofurans. Chemistry Letters, 2022, 51, 601-604.                                                            | 0.7 | 3         |
| 3  | Copper-catalyzed regioselective <i>trans</i> -silaboration of internal arylalkynes with stereochemical switch to <i>cis</i> -addition mode. Chemical Communications, 2021, 57, 4670-4673.                                                                | 2.2 | 10        |
| 4  | Intramolecular Addition of a Dimethylamino C(sp3)–H Bond across C–C Triple Bonds Using<br>IrCl(DTBM-SEGPHOS)(ethylene) Catalyst: Synthesis of Indoles from 2-Alkynyl-N-methylanilines.<br>Synthesis, 2021, 53, 3057-3064.                                | 1.2 | 7         |
| 5  | Mechanism of 2,6-Dichloro-4,4′-bipyridine-Catalyzed Diboration of Pyrazines Involving a<br>Bipyridine-Stabilized Boryl Radical. Bulletin of the Chemical Society of Japan, 2021, 94, 1894-1902.                                                          | 2.0 | 3         |
| 6  | Iridium-catalyzed enantioselective intramolecular hydroarylation of allylic aryl ethers devoid of a directing group on the aryl group. Chemical Communications, 2021, 57, 13542-13545.                                                                   | 2.2 | 4         |
| 7  | Construction of Silicon-Containing Seven-Membered Rings by Catalytic [4 + 2 + 1] Cycloaddition<br>through Rhodium Silylenoid. Organic Letters, 2020, 22, 2961-2966.                                                                                      | 2.4 | 17        |
| 8  | Tandem C–H Transformations by a Single Iridium Catalyst: Direct Access to Indoles and Indolines from<br><i>o</i> -Alkyl- <i>N</i> -methylanilines. ACS Catalysis, 2020, 10, 3152-3157.                                                                   | 5.5 | 13        |
| 9  | Iridiumâ€Catalyzed C( <i>sp</i> <sup>3</sup> )â~H Addition of Methyl Ethers across Intramolecular<br>Carbon–Carbon Double Bonds Giving 2,3â€Dihydrobenzofurans. Advanced Synthesis and Catalysis, 2019,<br>361, 4448-4453.                               | 2.1 | 15        |
| 10 | 4,4′-Bipyridyl-Catalyzed Reduction of Nitroarenes by Bis(neopentylglycolato)diboron. Organic Letters,<br>2019, 21, 9812-9817.                                                                                                                            | 2.4 | 40        |
| 11 | Pyridineâ€Based Organocatalysts for Regioselective <i>syn</i> â€1,2â€5ilaboration of Terminal Alkynes and Allenes. Asian Journal of Organic Chemistry, 2019, 8, 1092-1096.                                                                               | 1.3 | 24        |
| 12 | Catalytic Generation of Rhodium Silylenoid for Alkene–Alkyne–Silylene [2 + 2 + 1] Cycloaddition.<br>Organic Letters, 2019, 21, 1649-1653.                                                                                                                | 2.4 | 19        |
| 13 | Enantiospecific Suzuki–Miyaura Coupling of Nonbenzylic αâ€(Acylamino)alkylboronic Acid Derivatives.<br>Chemistry - an Asian Journal, 2018, 13, 2414-2417.                                                                                                | 1.7 | 23        |
| 14 | Utilization of a Trimethylsilyl Group as a Synthetic Equivalent of a Hydroxyl Group via Chemoselective<br>C(sp <sup>3</sup> )–H Borylation at the Methyl Group on Silicon. Journal of Organic Chemistry, 2017,<br>82, 2943-2956.                         | 1.7 | 28        |
| 15 | Palladium-Catalyzed β-Elimination of Aminoboranes from (Aminomethylsilyl)boranes Leading to the<br>Formation of Silene Dimers. Organometallics, 2017, 36, 4298-4304.                                                                                     | 1.1 | 8         |
| 16 | Asymmetric Cycloisomerization of <i>o</i> â€Alkenylâ€ <i>N</i> â€Methylanilines to Indolines by<br>Iridiumâ€Catalyzed C(sp <sup>3</sup> )â^'H Addition to Carbon–Carbon Double Bonds. Angewandte Chemie,<br>2017, 129, 14460-14464.                      | 1.6 | 9         |
| 17 | Asymmetric Cycloisomerization of <i>o</i> â€Alkenylâ€ <i>N</i> â€Methylanilines to Indolines by<br>Iridium atalyzed C(sp <sup>3</sup> )â^'H Addition to Carbon–Carbon Double Bonds. Angewandte Chemie<br>- International Edition, 2017, 56, 14272-14276. | 7.2 | 41        |
| 18 | 4,4′-Bipyridine-catalyzed Stereoselective <i>trans</i> -Diboration of Acetylenedicarboxylates to<br>2,3-Diborylfumarates. Chemistry Letters, 2017, 46, 1793-1796.                                                                                        | 0.7 | 22        |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Iridiumâ€Catalyzed Intramolecular Methoxy Câ^'H Addition to Carbon–Carbon Triple Bonds: Direct<br>Synthesis of 3â€Substituted Benzofurans from <i>o</i> â€Methoxyphenylalkynes. Chemistry - A European<br>Journal, 2016, 22, 10415-10419.                           | 1.7 | 27        |
| 20 | A (Borylmethyl)silane Bearing Three Hydrolyzable Groups on Silicon: Synthesis via Iridium-Catalyzed<br>C(sp <sup>3</sup> )–H Borylation and Conversion to Functionalized Siloxanes. Organometallics, 2016,<br>35, 1601-1603.                                        | 1.1 | 17        |
| 21 | Organocatalytic Diboration Involving "Reductive Addition―of a Boron–Boron σ-Bond to 4,4′-Bipyridine.<br>Journal of the American Chemical Society, 2015, 137, 2852-2855.                                                                                             | 6.6 | 60        |
| 22 | Site- and Regioselective Silaborative C–C Cleavage of 1-Alkyl-2-Methylenecyclopropanes Using a<br>Platinum Catalyst with a Sterically Demanding Silylboronic Ester. ACS Catalysis, 2015, 5, 3074-3077.                                                              | 5.5 | 29        |
| 23 | Iridium-catalysed borylation of sterically hindered C(sp <sup>3</sup> )–H bonds: remarkable rate acceleration by a catalytic amount of potassium tert-butoxide. Chemical Communications, 2014, 50, 6333-6336.                                                       | 2.2 | 42        |
| 24 | Synthesis of Cyclic Alkenylborates via Silaboration of Alkynes Followed by Hydrolysis for Utilization in External-Base-Free Cross Coupling. Organometallics, 2013, 32, 2870-2873.                                                                                   | 1.1 | 10        |
| 25 | Cycloaddition-based Formal C–H Alkynylation of Isoindoles Leading to the Synthesis of Air-stable<br>Fluorescent 1,3-Dialkynylisoindoles. Organic Letters, 2013, 15, 3510-3513.                                                                                      | 2.4 | 22        |
| 26 | Functionalization of Tetraorganosilanes and Permethyloligosilanes at a Methyl Group on Silicon via<br>Iridium-Catalyzed C(sp <sup>3</sup> )–H Borylation. Organometallics, 2013, 32, 6170-6173.                                                                     | 1.1 | 47        |
| 27 | Catalytic Borylation and Silylation of Unsaturated Organic Molecules: Reaction Control by<br>Transition Metal Catalysts and Applications to Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal<br>of Synthetic Organic Chemistry, 2013, 71, 804-817.            | 0.0 | 4         |
| 28 | Regioselective Synthesis of 1,2-Dihydropyridines by Rhodium-Catalyzed Hydroboration of Pyridines.<br>Journal of the American Chemical Society, 2012, 134, 3699-3702.                                                                                                | 6.6 | 152       |
| 29 | Catalytic Functionalization of Methyl Group on Silicon: Iridium-Catalyzed C(sp <sup>3</sup> )–H<br>Borylation of Methylchlorosilanes. Journal of the American Chemical Society, 2012, 134, 17416-17419.                                                             | 6.6 | 90        |
| 30 | Dearomatizing conversion of pyrazines to 1,4-dihydropyrazine derivatives via transition-metal-free diboration, silaboration, and hydroboration. Chemical Communications, 2012, 48, 8571.                                                                            | 2.2 | 64        |
| 31 | Enhanced Catalyst Activity and Enantioselectivity with Chirality-Switchable Polymer Ligand PQXphos<br>in Pd-Catalyzed Asymmetric Silaborative Cleavage of <i>meso</i> -Methylenecyclopropanes. Journal of<br>the American Chemical Society, 2012, 134, 11092-11095. | 6.6 | 122       |
| 32 | Inversion or Retention? Effects of Acidic Additives on the Stereochemical Course in Enantiospecific<br>Suzuki–Miyaura Coupling of α-(Acetylamino)benzylboronic Esters. Journal of the American Chemical<br>Society, 2011, 133, 20738-20741.                         | 6.6 | 165       |
| 33 | 2-Vinylindoles As the Four-Atom Component in a Catalytic [4+1] Cycloaddition with a<br>Silylene-Palladium Species Generated from (Aminosilyl)boronic Ester. Organometallics, 2011, 30,<br>1322-1325.                                                                | 1.1 | 24        |
| 34 | Dinuclear Palladium and Platinum Complexes with Bridging Silylene Ligands. Preparation Using<br>(Aminosilyl)boronic Ester as the Ligand Precursor and Their Reactions with Alkynes. Organometallics,<br>2011, 30, 3981-3991.                                        | 1.1 | 30        |
| 35 | Palladium-Catalyzed Regioselective Silaboration of Pyridines Leading to the Synthesis of Silylated<br>Dihydropyridines. Journal of the American Chemical Society, 2011, 133, 7324-7327.                                                                             | 6.6 | 94        |
| 36 | Integrated Catalytic Câ^'H Transformations for One-Pot Synthesis of 1-Arylisoindoles from Isoindolines<br>via Palladium-Catalyzed Dehydrogenation Followed by Câ^'H Arylation. Organic Letters, 2011, 13,<br>1238-1241.                                             | 2.4 | 43        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ( <i>E</i> )―and ( <i>Z</i> )â€î²â€Borylallylsilanes by Alkyne Silaboration Followed by Regio―and Stereoselective<br>Doubleâ€Bond Migration. Angewandte Chemie - International Edition, 2011, 50, 12501-12504.                 | 7.2 | 34        |
| 38 | Switch of Regioselectivity in Palladium-Catalyzed Silaboration of Terminal Alkynes by<br>Ligand-Dependent Control of Reductive Elimination. Journal of the American Chemical Society, 2010,<br>132, 12194-12196.               | 6.6 | 105       |
| 39 | Stereospecific Suzukiâ~'Miyaura Coupling of Chiral α-(Acylamino)benzylboronic Esters with Inversion of<br>Configuration. Journal of the American Chemical Society, 2010, 132, 13191-13193.                                     | 6.6 | 247       |
| 40 | Stereoselective Synthesis of <i>cis</i> â€Î²â€Methyl―and Phenylâ€Substituted Alkenylboronates by<br>Platinumâ€Catalyzed Dehydrogenative Borylation. Angewandte Chemie - International Edition, 2009, 48,<br>2372-2375.         | 7.2 | 52        |
| 41 | Kinetic Resolution of Racemic 1-Alkyl-2-methylenecyclopropanes via Palladium-Catalyzed Silaborative<br>Câ^'C Cleavage. Organic Letters, 2009, 11, 2880-2883.                                                                   | 2.4 | 48        |
| 42 | Palladium-Catalyzed Silylene-1,3-Diene [4 + 1] Cycloaddition with Use of (Aminosilyl)boronic Esters as Synthetic Equivalents of Silylene. Journal of the American Chemical Society, 2009, 131, 16624-16625.                    | 6.6 | 69        |
| 43 | Nickel-Catalyzed Ring-Opening Hydroacylation of Methylenecyclopropanes: Synthesis of γ,δ-Unsaturated<br>Ketones from Aldehydes. Journal of the American Chemical Society, 2009, 131, 11298-11299.                              | 6.6 | 89        |
| 44 | Synthesis of 1-Borylisoindoles via Palladium-Catalyzed Dehydrogenation/Câ^'H Borylation of<br>Isoindolines. Journal of the American Chemical Society, 2009, 131, 6070-6071.                                                    | 6.6 | 62        |
| 45 | Silylboranes as New Tools in Organic Synthesis. Bulletin of the Chemical Society of Japan, 2009, 82, 29-49.                                                                                                                    | 2.0 | 239       |
| 46 | α-Amidobenzylation of Aryl and Alkenyl Halides via Palladium-catalyzed Suzuki–Miyaura Coupling with<br>α-(Acylamino)benzylboronic Esters. Chemistry Letters, 2009, 38, 664-665.                                                | 0.7 | 35        |
| 47 | Palladium-catalysed cis- and trans-silaboration of terminal alkynes: complementary access to stereo-defined trisubstituted alkenes. Chemical Communications, 2008, , 1416.                                                     | 2.2 | 68        |
| 48 | Silylboranes Bearing Dialkylamino Groups on Silicon as Silylene Equivalents:  Palladium-Catalyzed<br>Regioselective Synthesis of 2,4-Disubstituted Siloles. Journal of the American Chemical Society, 2008,<br>130, 1526-1527. | 6.6 | 82        |
| 49 | Synthetic Application of Intramolecular Cyanoboration on the Basis of Removal and Conversion of a Tethering Group by Palladium-Catalyzed Retro-Allylation. Synlett, 2008, 2008, 423-427.                                       | 1.0 | 2         |
| 50 | Palladium-Catalyzed Asymmetric Silaborative Câ^'C Cleavage ofmeso-Methylenecyclopropanes. Journal of the American Chemical Society, 2007, 129, 3518-3519.                                                                      | 6.6 | 112       |
| 51 | Synthesis of Silylboronic Esters Functionalized on Silicon. Organometallics, 2007, 26, 1291-1294.                                                                                                                              | 1.1 | 69        |
| 52 | Asymmetric Silaboration of Terminal Allenes Bearing α-Stereogenic Centers:  Stereoselection Based on<br>"Reagent Control― Organic Letters, 2006, 8, 2503-2506.                                                                 | 2.4 | 51        |
| 53 | Ligand-Controlled, Complementary Stereoselectivity in the Platinum-Catalyzed Intramolecular<br>Silaboration of Alkenes. Journal of the American Chemical Society, 2006, 128, 13366-13367.                                      | 6.6 | 44        |
| 54 | Palladium-Catalyzed Asymmetric Silaboration of Allenes. Journal of the American Chemical Society, 2006, 128, 13682-13683.                                                                                                      | 6.6 | 132       |

Toshimichi Ohmura

| #  | ARTICLE                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enantioface-Selective Palladium-Catalyzed Silaboration of Allenes via Double Asymmetric Induction<br>ChemInform, 2004, 35, no.                                                                     | 0.1 | 0         |
| 56 | Regio- and Enantioselective Allylic Amination of Achiral Allylic Esters Catalyzed by an<br>Iridium—Phosphoramidite Complex ChemInform, 2003, 34, no.                                               | 0.1 | 0         |
| 57 | Regio- and Enantioselective Iridium-Catalyzed Intermolecular Allylic Etherification of Achiral Allylic<br>Carbonates with Phenoxides ChemInform, 2003, 34, no.                                     | 0.1 | 0         |
| 58 | Regio- and Enantioselective Iridium-Catalyzed Intermolecular Allylic Etherification of Achiral Allylic Carbonates with Phenoxides. Journal of the American Chemical Society, 2003, 125, 3426-3427. | 6.6 | 211       |
| 59 | Enantioface-Selective Palladium-Catalyzed Silaboration of Allenes via Double Asymmetric Induction.<br>Journal of the American Chemical Society, 2003, 125, 11174-11175.                            | 6.6 | 100       |
| 60 | Inter- and Intramolecular Additions of 1-Alkenylboronic Acids or Esters to Aldehydes and Ketones<br>Catalyzed by Rhodium(I) Complexes in Basic, Aqueous Solutions. Synlett, 2002, 2002, 1733-1735. | 1.0 | 2         |
| 61 | Regio- and Enantioselective Allylic Amination of Achiral Allylic Esters Catalyzed by an<br>Iridiumâ^'Phosphoramidite Complex. Journal of the American Chemical Society, 2002, 124, 15164-15165.    | 6.6 | 345       |
| 62 | Rhodium- or Iridium-Catalyzedtrans-Hydroboration of Terminal Alkynes, Giving (Z)-1-Alkenylboron<br>Compounds. Journal of the American Chemical Society, 2000, 122, 4990-4991.                      | 6.6 | 337       |
| 63 | Iridium-Catalyzed Dimerization of Terminal Alkynes to (E)-Enynes, (Z)-Enynes, or 1,2,3-Butatrienes.<br>Organometallics, 2000, 19, 365-367.                                                         | 1.1 | 102       |
| 64 | Synthesis of Chiral Esters of (E)-3-(Silyloxy)-2-propenylboronic Acid via the Iridium-Catalyzed<br>Isomerization of the Double Bond. Journal of Organic Chemistry, 1999, 64, 296-298.              | 1.7 | 84        |
| 65 | Stereoselective Synthesis of Silyl Enol Ethers via the Iridium-Catalyzed Isomerization of Allyl Silyl<br>Ethers. Organometallics, 1999, 18, 413-416.                                               | 1.1 | 69        |
| 66 | A stereoselective isomerization of allyl silyl ethers to (E)- or (Z)-silyl enol ethers using cationic iridium complexes. Chemical Communications, 1998, , 1337-1338.                               | 2.2 | 43        |