
Tianying Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3608882/publications.pdf Version: 2024-02-01

TIANVING REN

#	Article	IF	CITATIONS
1	Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17101-17106.	7.1	187
2	A Protective Role for Type 3 Deiodinase, a Thyroid Hormone-Inactivating Enzyme, in Cochlear Development and Auditory Function. Endocrinology, 2009, 150, 1952-1960.	2.8	139
3	Reverse propagation of sound in the gerbil cochlea. Nature Neuroscience, 2004, 7, 333-334.	14.8	138
4	Reticular lamina and basilar membrane vibrations in living mouse cochleae. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9910-9915.	7.1	115
5	Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Hearing Research, 2001, 151, 48-60.	2.0	99
6	Vanilloid Receptors in Hearing: Altered Cochlear Sensitivity by Vanilloids and Expression of TRPV1 in the Organ of Corti. Journal of Neurophysiology, 2003, 90, 444-455.	1.8	94
7	Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Hearing Research, 1995, 92, 170-177.	2.0	85
8	Organ of Corti Potentials and the Motion of the Basilar Membrane. Journal of Neuroscience, 2004, 24, 10057-10063.	3.6	81
9	Reverse wave propagation in the cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2729-2733.	7.1	64
10	Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. ELife, 2018, 7, .	6.0	63
11	A reversible ischemia model in gerbil cochlea. Hearing Research, 1995, 92, 30-37.	2.0	57
12	Measurement of cochlear power gain in the sensitive gerbil ear. Nature Communications, 2011, 2, 216.	12.8	54
13	Extracochlear electrically evoked otoacoustic emissions: a model for in vivo assessment of outer hair cell electromotility. Hearing Research, 1995, 92, 178-183.	2.0	52
14	The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea. Hearing Research, 1999, 131, 39-46.	2.0	44
15	Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry. Nature Communications, 2016, 7, 10282.	12.8	41
16	Two-tone distortion at different longitudinal locations on the basilar membrane. Hearing Research, 2007, 228, 112-122.	2.0	37
17	Group Delay of Acoustic Emissions in the Ear. Journal of Neurophysiology, 2006, 96, 2785-2791.	1.8	34
18	ATP-induced cochlear blood flow changes involve the nitric oxide pathway. Hearing Research, 1997, 112, 87-94.	2.0	31

TIANYING REN

#	Article	IF	CITATIONS
19	The Group Delay and Suppression Pattern of the Cochlear Microphonic Potential Recorded at the Round Window. PLoS ONE, 2012, 7, e34356.	2.5	27
20	Quinine-induced alterations of electrically evoked otoacoustic emissions and cochlear potentials in guinea pigs. Hearing Research, 2001, 154, 124-134.	2.0	26
21	Local mechanical stimulation of the hearing organ by laser irradiation. NeuroReport, 2006, 17, 33-37.	1.2	26
22	Localization of the Cochlear Amplifier in Living Sensitive Ears. PLoS ONE, 2011, 6, e20149.	2.5	25
23	A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ. Nature Communications, 2018, 9, 4175.	12.8	25
24	Contribution of the anterior inferior cerebellar artery to cochlear blood flow in guinea pig: A model-based analysis. Hearing Research, 1993, 71, 91-97.	2.0	24
25	Fast Reverse Propagation of Sound in the Living Cochlea. Biophysical Journal, 2010, 98, 2497-2505.	0.5	24
26	Two-tone distortion in reticular lamina vibration of the living cochlea. Communications Biology, 2020, 3, 35.	4.4	24
27	Electrically evoked otoacoustic emissions from apical and basal perilymphatic electrode positions in the guinea pig cochlea. Hearing Research, 2001, 152, 77-89.	2.0	21
28	A mechanism for active hearing. Current Opinion in Neurobiology, 2007, 17, 498-503.	4.2	21
29	Scleraxis is Required for Differentiation of the Stapedius and Tensor Tympani Tendons of the Middle Ear. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 407-421.	1.8	19
30	Light-induced vibration in the hearing organ. Scientific Reports, 2014, 4, 5941.	3.3	18
31	Acoustical modulation of electrically evoked otoacoustic emission in intact gerbil cochlea. Hearing Research, 1998, 120, 7-16.	2.0	17
32	Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 025003.	2.6	17
33	Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea. Hearing Research, 1996, 102, 43-50.	2.0	16
34	Recording depth of the heterodyne laser interferometer for cochlear vibration measurement. Journal of the Acoustical Society of America, 2001, 109, 826-829.	1.1	16
35	Fine structure and multicomponents of the electrically evoked otoacoustic emission in gerbil. Hearing Research, 2000, 143, 58-68.	2.0	15
36	Cochlear transducer operating point adaptation. Journal of the Acoustical Society of America, 2006, 119, 2232-2241.	1.1	14

TIANYING REN

#	Article	IF	CITATIONS
37	Acoustic modulation of electrically evoked distortion product otoacoustic emissions in gerbil cochlea. Neuroscience Letters, 1996, 207, 167-170.	2.1	13
38	Cochlear compression wave: An implication of the Allen-Fahey experiment. Journal of the Acoustical Society of America, 2006, 119, 1940-1942.	1.1	12
39	The origin of mechanical harmonic distortion within the organ of Corti in living gerbil cochleae. Communications Biology, 2021, 4, 1008.	4.4	10
40	The sources of electrically evoked otoacoustic emissions. Hearing Research, 2003, 180, 91-100.	2.0	9
41	Measurement of Basilar Membrane, Reticular Lamina, and Tectorial Membrane Vibrations in the Intact Mouse Cochlea. , 2011, , .		6
42	Reverse Propagation of Sounds in the Intact Cochlea. Journal of Neurophysiology, 2010, 104, 3732-3732.	1.8	4
43	In vivo Micromechanical Measurements of the Organ of Corti in the Basal Cochlear Turn. Audiology and Neuro-Otology, 2002, 7, 21-26.	1.3	3
44	Electrically evoked auditory nerve responses in the cochlea with normal outer hair cells. Journal of Otology, 2009, 4, 71-75.	1.0	3
45	Reticular lamina and basilar membrane vibrations in the basal turn of gerbil and mouse cochleae. AIP Conference Proceedings, 2018, , .	0.4	3
46	An outer hair cell-powered global hydromechanical mechanism for cochlear amplification. Hearing Research, 2021, , 108407.	2.0	3
47	Comment on "Enhancement of the transient-evoked otoacoustic emission produced by the addition of a pure tone in the guinea pig―[J. Acoust. Soc. Am.104, 344–349 (1998)]. Journal of the Acoustical Society of America, 1999, 105, 919-921.	1.1	2
48	Measurement of Amplitude and Delay of Stimulus Frequency Otoacoustic Emissions. Journal of Otology, 2013, 8, 57-62.	1.0	2
49	Probing the Cochlear Amplifier by Immobilizing Molecular Motors of Sensory Hair Cells. Neuron, 2012, 76, 868-870.	8.1	1
50	Light-induced basilar membrane vibrations in the sensitive cochlea. AIP Conference Proceedings, 2015, ,	0.4	1
51	Reply to "On Cochlear Impedances and the Miscomputation of Power Gain―by Shera et al. J. Assoc. Re. Otolaryngol JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 677-680.	1.8	0
52	Electrically evoked reticular lamina and basilar membrane vibrations in mice with alpha tectorin C1509G mutation. AlP Conference Proceedings, 2015, , .	0.4	0
53	Sound-induced Vibration in the Mammalian Inner Ear(International Workshop 5). The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2006, 2005.18, 7-8.	0.0	0