
Wei Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3608189/publications.pdf Version: 2024-02-01

WELXIONC

#	Article	IF	CITATIONS
1	2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 2021, 373, 1353-1358.	12.6	177
2	Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light: Science and Applications, 2012, 1, e6-e6.	16.6	158
3	Multimodal Nonlinear Optical Imaging of MoS ₂ and MoS ₂ -Based van der Waals Heterostructures. ACS Nano, 2016, 10, 3766-3775.	14.6	127
4	Laserâ€Directed Assembly of Aligned Carbon Nanotubes in Three Dimensions for Multifunctional Device Fabrication. Advanced Materials, 2016, 28, 2002-2009.	21.0	119
5	Recent advances in optical dynamic meta-holography. Opto-Electronic Advances, 2021, 4, 210030-210030.	13.3	113
6	Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy. Optics Letters, 2014, 39, 3034.	3.3	112
7	Fast growth of graphene patterns by laser direct writing. Applied Physics Letters, 2011, 98, .	3.3	107
8	Transparent, flexible, and solid-state supercapacitors based on graphene electrodes. APL Materials, 2013, 1, .	5.1	89
9	Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4, 4892.	3.3	78
10	Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Science Advances, 2020, 6, eaba8595.	10.3	78
11	Singleâ€Step Formation of Graphene on Dielectric Surfaces. Advanced Materials, 2013, 25, 630-634.	21.0	75
12	Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nature Communications, 2021, 12, 6425.	12.8	58
13	Anisotropic Enhancement of Second-Harmonic Generation in Monolayer and Bilayer MoS ₂ by Integrating with TiO ₂ Nanowires. Nano Letters, 2019, 19, 4195-4204.	9.1	56
14	An ultrathin memristor based on a two-dimensional WS ₂ /MoS ₂ heterojunction. Nanoscale, 2021, 13, 11497-11504.	5.6	39
15	High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes. RSC Advances, 2013, 3, 20613.	3.6	36
16	Laser-based micro/nanofabrication in one, two and three dimensions. Frontiers of Optoelectronics, 2015, 8, 351-378.	3.7	36
17	Solid-state graphene formation via a nickel carbide intermediate phase. RSC Advances, 2015, 5, 99037-99043.	3.6	34
18	Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures. International Journal of Extreme Manufacturing, 2019, 1, 025001.	12.7	34

Wei Xiong

#	Article	IF	CITATIONS
19	Nonlinear Optical Characterization of 2D Materials. Nanomaterials, 2020, 10, 2263.	4.1	34
20	Nanostructured electrically conductive hydrogels obtained <i>via</i> ultrafast laser processing and self-assembly. Nanoscale, 2019, 11, 9176-9184.	5.6	31
21	Terahertz Nanoimaging and Nanospectroscopy of Chalcogenide Phase-Change Materials. ACS Photonics, 2020, 7, 3499-3506.	6.6	29
22	Directional Assembly of ZnO Nanowires via Three-Dimensional Laser Direct Writing. Nano Letters, 2020, 20, 5159-5166.	9.1	28
23	Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Applied Physics Letters, 2011, 99, 053103.	3.3	27
24	Self-aligned growth of single-walled carbon nanotubes using optical near-field effects. Nanotechnology, 2009, 20, 025601.	2.6	19
25	Laser-assisted nanofabrication of carbon nanostructures. Journal of Laser Applications, 2012, 24, .	1.7	17
26	Controlled growth of carbon nanotubes on electrodes under different bias polarity. Applied Physics Letters, 2009, 95, 143117.	3.3	12
27	Scalable and cost-effective Ag nanowires flexible transparent electrodes. RSC Advances, 2018, 8, 12146-12151.	3.6	11
28	Two-Step Freezing Polymerization Method for Efficient Synthesis of High-Performance Stimuli-Responsive Hydrogels. ACS Omega, 2020, 5, 5921-5930.	3.5	11
29	Rapid Solid-Phase Sulfurization Growth and Nonlinear Optical Characterization of Transfer-Free TiS ₃ Nanoribbons. Chemistry of Materials, 2022, 34, 2790-2797.	6.7	11
30	Polarized second-harmonic generation optical microscopy for laser-directed assembly of ZnO nanowires. Optics Letters, 2019, 44, 4291.	3.3	10
31	Interfacial Engineering Regulates Deposition Kinetics of Zinc Metal Anodes. ACS Applied Energy Materials, 2021, 4, 11743-11751.	5.1	8
32	3D Printing Nanoâ€Architected Semiconductors Based on Versatile and Customizable Metalâ€Bound Composite Photoresins. Advanced Materials Technologies, 0, , 2101230.	5.8	8
33	Rapid In-Situ Synthesis and Patterning of Edge-Unsaturated MoS ₂ by Femtosecond Laser-Induced Photo-Chemical Reaction. ACS Applied Materials & Interfaces, 2022, 14, 5558-5566.	8.0	6
34	Composite laser beam separation technology for brittle transparent materials. Optics Letters, 2022, 47, 742.	3.3	5
35	Strong photoluminescence from diameter-modulated single-walled carbon nanotubes. Applied Physics Letters, 2012, 101, 043123.	3.3	1
36	Three-dimensional micro/nano-fabrication by integration of additive and subtractive		1

Wei Xiong

#	Article	IF	CITATIONS
37	Self-aligned growth of single-walled carbon nanotubes using optical near-field effects. Materials Research Society Symposia Proceedings, 2008, 1142, 103801.	0.1	0
38	Laser-assisted deposition of good carbon $\hat{a} \in \raiset$ From diamond films to nanotubes. , 2009, , .		0
39	Growth of diameter-modulated single-walled carbon nanotubes through instant temperature modulation in laser-assisted chemical vapor deposition. Materials Research Society Symposia Proceedings, 2011, 1284, 61.	0.1	0
40	Laser direct writing of graphene patterns. Materials Research Society Symposia Proceedings, 2011, 1365, 1.	0.1	0
41	Assembly of carbon nanotube devices by tip-induced optical trapping. Materials Research Society Symposia Proceedings, 2011, 1365, 1.	0.1	0
42	What Can Lasers Do in the Nano-Fabrication of Carbon Nanotube Based Devices?. Materials Research Society Symposia Proceedings, 2011, 1365, 1.	0.1	0
43	Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond-laser direct writing. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	0.1	0
44	Laser direct writing of multifunctional micro/nano devices using carbon nanotube–polymer composites. , 2016, , .		0
45	Laser-induced growth of diameter-modulated single-walled carbon nanotubes. , 2011, , .		0