
Ethan O Kung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3608185/publications.pdf Version: 2024-02-01

Ετήλη Ο Κιίνο

#	Article	IF	CITATIONS
1	Plaque contact surface area and lumen volume predict stroke risk in extracranial carotid artery stenosis. Journal of Vascular Surgery, 2022, 76, 482-488.	1.1	3
2	Predictive Models for Pulmonary Artery Size in Fontan Patients. Journal of Cardiovascular Translational Research, 2021, 14, 782-789.	2.4	3
3	Hemodynamic Response to Device Titration in the Shunted Single Ventricle Circulation. ASAIO Journal, 2021, Publish Ahead of Print, .	1.6	0
4	Design, Development, and Temporal Evaluation of a Magnetic Resonance Imaging-Compatible In Vitro Circulation Model Using a Compliant Abdominal Aortic Aneurysm Phantom. Journal of Biomechanical Engineering, 2021, 143, .	1.3	3
5	Systematic Review and Regression Modeling of the Effects of Age, Body Size, and Exercise on Cardiovascular Parameters in Healthy Adults. Cardiovascular Engineering and Technology, 2021, , 1.	1.6	0
6	Tunable Blood Shunt for Neonates With Complex Congenital Heart Defects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 734310.	4.1	1
7	Risks and Benefits of Using a Commercially Available Ventricular Assist Device for Failing Fontan Cavopulmonary Support: A Modeling Investigation. IEEE Transactions on Biomedical Engineering, 2020, 67, 213-219.	4.2	10
8	An algorithm for coupling multibranch in vitro experiment to numerical physiology simulation for a hybrid cardiovascular model. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3289.	2.1	9
9	Multiscale Modeling of Superior Cavopulmonary Circulation: Hemi-Fontan and Bidirectional Glenn Are Equivalent. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 883-892.	0.6	9
10	Target Flow-Pressure Operating Range for Designing a Failing Fontan Cavopulmonary Support Device. IEEE Transactions on Biomedical Engineering, 2020, 67, 2925-2933.	4.2	3
11	A protocol for automated a posteriori adaptive meshing with SimVascular: a test case. BMC Research Notes, 2020, 13, 229.	1.4	0
12	A Hybrid Experimental-Computational Modeling Framework for Cardiovascular Device Testing. Journal of Biomechanical Engineering, 2019, 141, .	1.3	18
13	Factors Affecting Cardiovascular Physiology in Cardiothoracic Surgery: Implications for Lumped-Parameter Modeling. Frontiers in Surgery, 2019, 6, 62.	1.4	8
14	An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 712-721.	0.8	24
15	Superior performance of continuous over pulsatile flow ventricular assist devices in the single ventricle circulation: A computational study. Journal of Biomechanics, 2017, 52, 48-54.	2.1	24
16	A Real-Time Programmable Pulsatile Flow Pump for In Vitro Cardiovascular Experimentation. Journal of Biomechanical Engineering, 2016, 138, .	1.3	20
17	Does TCPC power loss really affect exercise capacity?. Heart, 2015, 101, 575.1-575.	2.9	3
18	Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: A clinical and computational modeling study. IJC Heart and Vasculature, 2015, 9, 100-108.	1.1	15

Ethan O Kung

#	Article	IF	CITATIONS
19	Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: A patient-specific multiscale modeling study. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 689-696.e3.	0.8	34
20	Integration of Clinical Data Collected at Different Times for Virtual Surgery in Single Ventricle Patients: A Case Study. Annals of Biomedical Engineering, 2015, 43, 1310-1320.	2.5	15
21	Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients. Annals of Biomedical Engineering, 2015, 43, 1335-1347.	2.5	14
22	A Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed Loop Lumped-Parameter Model. Journal of Biomechanical Engineering, 2014, 136, .	1.3	50
23	In Vitro Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease. Cardiovascular Engineering and Technology, 2014, 5, 189-201.	1.6	28
24	An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 1572-1589.	1.6	55
25	Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomechanics and Modeling in Mechanobiology, 2014, 13, 1261-1276.	2.8	53
26	Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: Two patient-specific cases. Journal of Biomechanics, 2013, 46, 423-429.	2.1	71
27	An Automated Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed-Loop Lumped-Parameter Model. , 2013, , .		0
28	Moving Domain Computational Fluid Dynamics to Interface with an Embryonic Model of Cardiac Morphogenesis. PLoS ONE, 2013, 8, e72924.	2.5	51
29	A Hemi Fontan Operation Performed by an Engineer: Considerations on Virtual Surgery. , 2013, , .		0
30	In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models. Annals of Biomedical Engineering, 2011, 39, 1947-1960.	2.5	81
31	Development of a Physical Windkessel Module to Re-Create In Vivo Vascular Flow Impedance for In Vitro Experiments. Cardiovascular Engineering and Technology, 2011, 2, 2-14.	1.6	38
32	In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions. Journal of Biomechanical Engineering, 2011, 133, 041003.	1.3	55
33	In Vitro Validation of Finite Element Model of AAA Hemodynamics Incorporating Realistic Outflow Boundary Conditions. , 2010, , .		0