
## David A Kofke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3607536/publications.pdf Version: 2024-02-01



DAVID & KOEKE

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Journal of Chemical & Engineering Data: Introduction of Topical Sections and Updates from the Editorial Team. Journal of Chemical & Engineering Data, 2022, 67, 1-2.                      | 1.0 | 1         |
| 2  | Identifying and estimating bias in overlap-sampling free-energy calculations. Molecular Simulation, 2021, 47, 379-389.                                                                        | 0.9 | 4         |
| 3  | pyHMA: A VASP post-processor for precise measurement of crystalline anharmonic properties using harmonically mapped averaging. Computer Physics Communications, 2021, 258, 107554.            | 3.0 | 4         |
| 4  | Properties of supercritical N 2 , O 2 , CO 2 , and NH 3 mixtures from the virial equation of state. AICHE Journal, 2021, 67, e17072.                                                          | 1.8 | 3         |
| 5  | Journal of Chemical & Engineering Data: An Update from the Editorial Team. Journal of Chemical &<br>Engineering Data, 2021, 66, 1-2.                                                          | 1.0 | 0         |
| 6  | Journal of Chemical & Engineering Data: Why Change the Cover Page?. Journal of Chemical &<br>Engineering Data, 2021, 66, 859-860.                                                             | 1.0 | 0         |
| 7  | Historical Perspective of the Journal of Chemical & Engineering Data's Published Topics, 1956–2020.<br>Journal of Chemical & Engineering Data, 2021, 66, 1555-1556.                           | 1.0 | 1         |
| 8  | Evaluation of Osmotic Virial Coefficients via Restricted Gibbs Ensemble Simulations, with Support from Gas-Phase Mixture Coefficients. Journal of Physical Chemistry B, 2021, 125, 7262-7272. | 1.2 | 1         |
| 9  | Speed of Sound in Helium-4 from Ab Initio Acoustic Virial Coefficients. Journal of Chemical &<br>Engineering Data, 2021, 66, 3258-3281.                                                       | 1.0 | 8         |
| 10 | Molecular Calculation of the Critical Parameters of Classical Helium. Journal of Chemical &<br>Engineering Data, 2020, 65, 1028-1037.                                                         | 1.0 | 6         |
| 11 | Implementation of harmonically mapped averaging in LAMMPS, and effect of potential truncation on anharmonic properties. Journal of Chemical Physics, 2020, 152, 014107.                       | 1.2 | 3         |
| 12 | Cluster integrals and virial coefficients for realistic molecular models. Physical Review E, 2020, 101, 051301.                                                                               | 0.8 | 9         |
| 13 | Highlighting 10 Years of NIST Cooperation and Service to the Thermophysical Properties Data<br>Community. Journal of Chemical & Engineering Data, 2019, 64, 4191-4192.                        | 1.0 | 4         |
| 14 | Alternative ensemble averages in molecular dynamics simulation of hard spheres. Molecular Physics, 2019, 117, 3734-3753.                                                                      | 0.8 | 4         |
| 15 | Force-sampling methods for density distributions as instances of mapped averaging. Molecular<br>Physics, 2019, 117, 2822-2829.                                                                | 0.8 | 15        |
| 16 | Virial Coefficients of Helium-4 from <i>Ab Initio</i> -Based Molecular Models. Journal of Chemical<br>& Engineering Data, 2019, 64, 3742-3754.                                                | 1.0 | 17        |
| 17 | Introducing JCED's Latin America Special Issue. Journal of Chemical & Engineering Data, 2019, 64,<br>1859-1859.                                                                               | 1.0 | 1         |
| 18 | Alternatives to conventional ensemble averages for thermodynamic properties. Current Opinion in<br>Chemical Engineering, 2019, 23, 70-76.                                                     | 3.8 | 11        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Combined temperature and density series for fluid-phase properties. II. Lennard-Jones spheres. Journal of Chemical Physics, 2019, 151, 204501.                                                                       | 1.2 | 13        |
| 20 | Molecular Calculation of the Critical Parameters of Classical Helium. Journal of Chemical &<br>Engineering Data, 2019, 65, .                                                                                         | 1.0 | 0         |
| 21 | Electric-field mapped averaging for the dielectric constant. Fluid Phase Equilibria, 2018, 470, 17-24.                                                                                                               | 1.4 | 2         |
| 22 | Comprehensive high-precision high-accuracy equation of state and coexistence properties for<br>classical Lennard-Jones crystals and low-temperature fluid phases. Journal of Chemical Physics, 2018,<br>149, 204508. | 1.2 | 43        |
| 23 | Effects of thermostatting in molecular dynamics on anharmonic properties of crystals: Application to fcc Al at high pressure and temperature. Journal of Chemical Physics, 2018, 149, 124109.                        | 1.2 | 16        |
| 24 | Peer Review Appreciation at <i>JCED</i> . Journal of Chemical & amp; Engineering Data, 2018, 63, 3169-3169.                                                                                                          | 1.0 | 1         |
| 25 | Free energy and concentration of crystalline vacancies by molecular simulation. Molecular Physics, 2018, 116, 3027-3041.                                                                                             | 0.8 | 9         |
| 26 | No system-size anomalies in entropy of bcc iron at Earth's inner-core conditions. Scientific Reports, 2018, 8, 7295.                                                                                                 | 1.6 | 7         |
| 27 | Quantum virial coefficients of molecular nitrogen. Molecular Physics, 2017, 115, 869-878.                                                                                                                            | 0.8 | 6         |
| 28 | Direct orientation sampling of diatomic molecules for path integral Monte Carlo calculation of fully quantum virial coefficients. Journal of Chemical Physics, 2017, 146, .                                          | 1.2 | 4         |
| 29 | Evaluation of second and third dielectric virial coefficients for non-polarisable molecular models.<br>Molecular Physics, 2017, 115, 991-1003.                                                                       | 0.8 | 7         |
| 30 | Harmonically Assisted Methods for Computing the Free Energy of Classical Crystals by Molecular<br>Simulation: A Comparative Study. Journal of Chemical Theory and Computation, 2017, 13, 825-834.                    | 2.3 | 20        |
| 31 | Virial Coefficients and Equations of State for Hard Polyhedron Fluids. Langmuir, 2017, 33, 11788-11796.                                                                                                              | 1.6 | 19        |
| 32 | Accurate and precise <i>ab initio</i> anharmonic free-energy calculations for metallic crystals:<br>Application to hcp Fe at high temperature and pressure. Physical Review B, 2017, 96, .                           | 1.1 | 25        |
| 33 | Quantum Virial Coefficients via Path Integral Monte Carlo with Semi-classical Beads. Molecular<br>Modeling and Simulation, 2016, , 93-106.                                                                           | 0.2 | Ο         |
| 34 | Reformulation of Ensemble Averages via Coordinate Mapping. Journal of Chemical Theory and Computation, 2016, 12, 1491-1498.                                                                                          | 2.3 | 24        |
| 35 | Calculation of high-order virial coefficients for the square-well potential. Physical Review E, 2016, 94, 013301.                                                                                                    | 0.8 | 8         |
| 36 | Thermodynamic Properties of Supercritical CO <sub>2</sub> /CH <sub>4</sub> Mixtures from the Virial Equation of State. Journal of Chemical & Engineering Data, 2016, 61, 4296-4312.                                  | 1.0 | 9         |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vapor-phase metastability and condensation via the virial equation of state with extrapolated coefficients. Fluid Phase Equilibria, 2016, 409, 12-18.                                   | 1.4 | 20        |
| 38 | Very fast averaging of thermal properties of crystals by molecular simulation. Physical Review E, 2015, 92, 043303.                                                                     | 0.8 | 27        |
| 39 | Eighth to sixteenth virial coefficients of the Lennard-Jones model. Journal of Chemical Physics, 2015, 143, 044504.                                                                     | 1.2 | 33        |
| 40 | Communication: Analytic continuation of the virial series through the critical point using parametric approximants. Journal of Chemical Physics, 2015, 143, 071103.                     | 1.2 | 21        |
| 41 | Molecularâ€based virial coefficients of CO <sub>2</sub> â€H <sub>2</sub> O mixtures. AICHE Journal, 2015, 61, 3029-3037.                                                                | 1.8 | 15        |
| 42 | <i>Etomica</i> : An objectâ€oriented framework for molecular simulation. Journal of Computational<br>Chemistry, 2015, 36, 573-583.                                                      | 1.5 | 22        |
| 43 | The rate of convergence of the virial series in confined systems. Molecular Physics, 2015, 113, 1179-1189.                                                                              | 0.8 | 8         |
| 44 | Combined temperature and density series for fluid-phase properties. I. Square-well spheres. Journal of<br>Chemical Physics, 2015, 143, 114110.                                          | 1.2 | 12        |
| 45 | Effects of Finite Size and Proton Disorder on Lattice-Dynamics Estimates of the Free Energy of<br>Clathrate Hydrates. Industrial & Engineering Chemistry Research, 2015, 54, 4487-4496. | 1.8 | 6         |
| 46 | Mixed-precision models for calculation of high-order virial coefficients on GPUs. , 2014, , .                                                                                           |     | 0         |
| 47 | Fifth to eleventh virial coefficients of hard spheres. Physical Review E, 2014, 90, 023301.                                                                                             | 0.8 | 59        |
| 48 | Quantifying Computational Effort Required for Stochastic Averages. Journal of Chemical Theory and Computation, 2014, 10, 5229-5234.                                                     | 2.3 | 23        |
| 49 | Critical isotherms from virial series using asymptotically consistent approximants. AICHE Journal, 2014, 60, 3336-3349.                                                                 | 1.8 | 19        |
| 50 | Interpreting Gas-Saturation Vapor-Pressure Measurements Using Virial Coefficients Derived from Molecular Models. Journal of Chemical & Engineering Data, 2014, 59, 3183-3192.           | 1.0 | 7         |
| 51 | A comparative study of methods to compute the free energy of an ordered assembly by molecular simulation. Journal of Chemical Physics, 2013, 139, 084105.                               | 1.2 | 18        |
| 52 | Mayer Sampling Monte Carlo calculation of virial coefficients on graphics processors. Molecular Physics, 2013, 111, 535-543.                                                            | 0.8 | 28        |
| 53 | Second through fifth virial coefficients for model methane–ethane mixtures. Fluid Phase Equilibria,<br>2013, 351, 69-73.                                                                | 1.4 | 10        |
| 54 | Calculation of inhomogeneous-fluid cluster expansions with application to the hard-sphere/hard-wall system. Journal of Chemical Physics, 2013, 138, 134706.                             | 1.2 | 19        |

| #  | Article                                                                                                                                                                                                                                                                              | IF                 | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| 55 | Path-integral Mayer-sampling calculations of the quantum Boltzmann contribution to virial coefficients of helium-4. Journal of Chemical Physics, 2012, 137, 184101.                                                                                                                  | 1.2                | 42        |
| 56 | Solder joint grain boundary structure and diffusivity via molecular dynamics simulations. , 2012, , .                                                                                                                                                                                |                    | 0         |
| 57 | Virial Equation of State of Water Based on Wertheim's Association Theory. Journal of Physical<br>Chemistry B, 2012, 116, 14078-14088.                                                                                                                                                | 1.2                | 9         |
| 58 | Semiclassical fifth virial coefficients for improved ab initio helium-4 standards. Chemical Physics Letters, 2012, 531, 11-17.                                                                                                                                                       | 1.2                | 28        |
| 59 | Solute Effects on β-Sn Grain Boundary Energy and Shear Stress. Journal of Nanomechanics & Micromechanics, 2011, 1, 41-50.                                                                                                                                                            | 1.4                | 9         |
| 60 | Virial coefficients, equation of state, and solid–fluid coexistence for the soft sphere model.<br>Molecular Physics, 2011, 109, 123-132.                                                                                                                                             | 0.8                | 21        |
| 61 | Efficient calculation of $\langle i \rangle \hat{l} \pm \langle i \rangle$ - and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -nitrogen free energies and coexistence conditions via overlap sampling with targeted perturbation. Journal of Chemical Physics, 2011, 135, 044125. | 1.2                | 9         |
| 62 | Integral-equation theories and Mayer-sampling Monte Carlo: a tandem approach for computing virial coefficients of simple fluids. Molecular Physics, 2011, 109, 2395-2406.                                                                                                            | 0.8                | 15        |
| 63 | Mayer-sampling Monte Carlo calculations of uniquely flexible contributions to virial coefficients.<br>Journal of Chemical Physics, 2011, 135, 124101.                                                                                                                                | 1.2                | 27        |
| 64 | Algorithm for constant-pressure Monte Carlo simulation of crystalline solids. Physical Review E, 2011, 84, 046712.                                                                                                                                                                   | 0.8                | 6         |
| 65 | Effect of Cu and Ag solute segregation on <i>β</i> Sn grain boundary diffusivity. Journal of Applied Physics, 2011, 110, 013528.                                                                                                                                                     | 1.1                | 18        |
| 66 | Modeling solubility in supercritical fluids via the virial equation of state. Journal of Supercritical Fluids, 2010, 55, 479-484.                                                                                                                                                    | 1.6                | 10        |
| 67 | Atomistic modeling of β-Sn surface energies and adatom diffusivity. Applied Surface Science, 2010, 256, 4402-4407.                                                                                                                                                                   | 3.1                | 44        |
| 68 | Mayer-sampling Monte Carlo calculations of methanol virial coefficients. Molecular Simulation, 2010, 36, 1282-1288.                                                                                                                                                                  | 0.9                | 7         |
| 69 | <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mi>î²</mml:mi><mml:mtext>-Sn</mml:mtext></mml:mrow></mml:math> g<br>structure and self-diffusivity via molecular dynamics simulations. Physical Review B, 2010, 81, .             | ai <b>n</b> -bound | lar3y5    |
| 70 | Suitability of umbrella- and overlap-sampling methods for calculation of solid-phase free energies by molecular simulation. Journal of Chemical Physics, 2010, 132, 214103.                                                                                                          | 1.2                | 19        |
| 71 | Efficient calculation of temperature dependence of solid-phase free energies by overlap sampling coupled with harmonically targeted perturbation. Journal of Chemical Physics, 2010, 133, 134104.                                                                                    | 1.2                | 21        |
| 72 | Molecular Based Modeling of Associating Fluids via Calculation of Wertheim Cluster Integrals.<br>Journal of Physical Chemistry B, 2010, 114, 11515-11524.                                                                                                                            | 1.2                | 5         |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Virial coefficients of model alkanes. Journal of Chemical Physics, 2010, 133, 104101.                                                                                      | 1.2 | 40        |
| 74 | The effect of truncation and shift on virial coefficients of Lennard–Jones potentials. Collection of Czechoslovak Chemical Communications, 2010, 75, 447-462.              | 1.0 | 21        |
| 75 | Lattice Strain Due to an Atomic Vacancy. International Journal of Molecular Sciences, 2009, 10, 2798-2808.                                                                 | 1.8 | 40        |
| 76 | Virial coefficients of Lennard-Jones mixtures. Journal of Chemical Physics, 2009, 130, 224104.                                                                             | 1.2 | 14        |
| 77 | Fourth and Fifth Virial Coefficients of Polarizable Water. Journal of Physical Chemistry B, 2009, 113, 7810-7815.                                                          | 1.2 | 51        |
| 78 | Sixth, seventh and eighth virial coefficients of the Lennard-Jones model. Molecular Physics, 2009, 107, 2309-2318.                                                         | 0.8 | 66        |
| 79 | Interpolation of virial coefficients. Molecular Physics, 2009, 107, 1431-1436.                                                                                             | 0.8 | 10        |
| 80 | Semigrand Canonical Monte Carlo Simulation; Integration Along Coexistence Lines. Advances in Chemical Physics, 2007, , 405-441.                                            | 0.3 | 39        |
| 81 | Calculation of surface tension via area sampling. Journal of Chemical Physics, 2007, 127, 174709.                                                                          | 1.2 | 99        |
| 82 | Virial Coefficients of Polarizable Water:  Applications to Thermodynamic Properties and Molecular<br>Clustering. Journal of Physical Chemistry C, 2007, 111, 16021-16027.  | 1.5 | 50        |
| 83 | Higher-Order Virial Coefficients of Water Models. Journal of Physical Chemistry B, 2007, 111, 11463-11473.                                                                 | 1.2 | 78        |
| 84 | Gas-Phase Molecular Clustering of TIP4P and SPC/E Water Models from Higher-Order Virial<br>Coefficients. Industrial & Engineering Chemistry Research, 2006, 45, 5566-5573. | 1.8 | 43        |
| 85 | On the sampling requirements for exponential-work free-energy calculations. Molecular Physics, 2006, 104, 3701-3708.                                                       | 0.8 | 32        |
| 86 | Three-body effects in hydrogen fluoride: survey of potential energy surfaces. Molecular Physics, 2006,<br>104, 503-513.                                                    | 0.8 | 7         |
| 87 | Free energy methods in molecular simulation. Fluid Phase Equilibria, 2005, 228-229, 41-48.                                                                                 | 1.4 | 87        |
| 88 | Phase-space overlap measures. II. Design and implementation of staging methods for free-energy calculations. Journal of Chemical Physics, 2005, 123, 084109.               | 1.2 | 95        |
| 89 | Evaluation of bridge-function diagrams via Mayer-sampling Monte Carlo simulation. Journal of<br>Chemical Physics, 2005, 122, 104508.                                       | 1.2 | 16        |
| 90 | Effect of monovacancies on the relative stability of fcc and hcp hard-sphere crystals. Journal of<br>Chemical Physics, 2005, 122, 176101.                                  | 1.2 | 6         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Rosenbluth-sampled nonequilibrium work method for calculation of free energies in molecular simulation. Journal of Chemical Physics, 2005, 122, 204104.                                               | 1.2 | 45        |
| 92  | Trimer Based Polarization as a Multibody Molecular Model. Application to Hydrogen Fluoride. Journal of the American Chemical Society, 2005, 127, 690-698.                                             | 6.6 | 5         |
| 93  | Molecular Simulation Study of the Effect of Pressure on the Vaporâ^'Liquid Interface of the<br>Square-Well Fluid. Langmuir, 2005, 21, 4218-4226.                                                      | 1.6 | 9         |
| 94  | Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation. Journal of Chemical Physics, 2005, 123, 054103.                                        | 1.2 | 131       |
| 95  | Selection of temperature intervals for parallel-tempering simulations. Journal of Chemical Physics, 2005, 122, 206101.                                                                                | 1.2 | 136       |
| 96  | Perspective: Free Energies and Phase Equilibria. , 2005, , 683-705.                                                                                                                                   |     | 5         |
| 97  | Perspective: Free Energies and Phase Equilibria. , 2005, , 683-705.                                                                                                                                   |     | 1         |
| 98  | Model for small-sample bias of free-energy calculations applied to Gaussian-distributed nonequilibrium work measurements. Journal of Chemical Physics, 2004, 121, 8742-8747.                          | 1.2 | 44        |
| 99  | Getting the most from molecular simulation. Molecular Physics, 2004, 102, 405-420.                                                                                                                    | 0.8 | 49        |
| 100 | Molecular simulation study of miscibility in InxGa1â^'xN ternary alloys. Journal of Applied Physics, 2004, 95, 4500-4502.                                                                             | 1.1 | 30        |
| 101 | Elastic constants and the effect of strain on monovacancy concentration in fcc hard-sphere crystals.<br>Physical Review B, 2004, 70, .                                                                | 1.1 | 8         |
| 102 | Comment on "The incomplete beta function law for parallel tempering sampling of classical canonical<br>systems―[J. Chem. Phys. 120, 4119 (2004)]. Journal of Chemical Physics, 2004, 121, 1167-1167.  | 1.2 | 36        |
| 103 | Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods. Journal of Computational Chemistry, 2004, 25, 28-40.                                | 1.5 | 145       |
| 104 | Mayer Sampling: Calculation of Cluster Integrals using Free-Energy Perturbation Methods. Physical Review Letters, 2004, 92, 220601.                                                                   | 2.9 | 156       |
| 105 | Asymmetric bias in free-energy perturbation measurements using two Hamiltonian-based models.<br>Physical Review E, 2004, 70, 066702.                                                                  | 0.8 | 30        |
| 106 | Using overlap and funnel sampling to obtain accurate free energies from nonequilibrium work measurements. Physical Review E, 2004, 69, 057702.                                                        | 0.8 | 37        |
| 107 | Liquid-Phase Activity Coefficients for Saturated HF/H2O Mixtures with Vapor-Phase Nonidealities<br>Described by Molecular Simulation. Industrial & Engineering Chemistry Research, 2004, 43, 218-227. | 1.8 | 4         |
| 108 | Molecular simulation study of effect of molecular association on vapor-liquid interfacial properties.<br>Journal of Chemical Physics, 2004, 121, 9574-9580.                                           | 1.2 | 30        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Molecular simulation study of miscibility of ternary and quaternary InGaAlN alloys. Journal of Applied Physics, 2004, 95, 6129-6137.                                          | 1.1 | 35        |
| 110 | Molecular Simulation Study of the Vapor–Liquid Interfacial Behavior of a Dimer-forming Associating<br>Fluid. Molecular Simulation, 2004, 30, 343-351.                         | 0.9 | 21        |
| 111 | Staging Is More Important than Perturbation Method for Computation of Enthalpy and Entropy Changes in Complex Systems. Journal of Physical Chemistry B, 2003, 107, 5598-5611. | 1.2 | 45        |
| 112 | Surface tension and vapor–liquid phase coexistence of the square-well fluid. Journal of Chemical Physics, 2003, 119, 3405-3412.                                               | 1.2 | 134       |
| 113 | Fugacity Coefficients of Saturated Water from Molecular Simulation. Journal of Physical Chemistry<br>B, 2003, 107, 12808-12813.                                               | 1.2 | 11        |
| 114 | Hydrogen fluoride phase behavior and molecular structure: Ab initio derived potential models.<br>Journal of Chemical Physics, 2003, 119, 6092-6099.                           | 1.2 | 17        |
| 115 | Appropriate methods to combine forward and reverse free-energy perturbation averages. Journal of Chemical Physics, 2003, 118, 2977-2984.                                      | 1.2 | 174       |
| 116 | Variational formula for the free energy based on incomplete sampling in a molecular simulation.<br>Physical Review E, 2003, 68, 026122.                                       | 0.8 | 14        |
| 117 | Hydrogen fluoride phase behavior and molecular structure: A QM/MM potential model approach.<br>Journal of Chemical Physics, 2003, 119, 7365-7371.                             | 1.2 | 26        |
| 118 | Self-referential method for calculation of the free energy of crystals by Monte Carlo simulation.<br>Physical Review E, 2002, 65, 036709.                                     | 0.8 | 8         |
| 119 | On the acceptance probability of replica-exchange Monte Carlo trials. Journal of Chemical Physics, 2002, 117, 6911-6914.                                                      | 1.2 | 200       |
| 120 | A comparison of some variational formulas for the free energy as applied to hard-sphere crystals.<br>Journal of Chemical Physics, 2002, 117, 9111-9115.                       | 1.2 | 3         |
| 121 | Monte Carlo and cell model calculations for the solid—fluid phase behaviour of the triangle-well<br>model. Molecular Physics, 2002, 100, 1543-1550.                           | 0.8 | 14        |
| 122 | Improved models for the phase behaviour of hydrogen fluoride: chain and ring aggregates in the SAFT approach and the AEOS model. Molecular Physics, 2002, 100, 2241-2259.     | 0.8 | 49        |
| 123 | UB association bias algorithm applied to the simulation of hydrogen fluoride. Fluid Phase Equilibria,<br>2002, 194-197, 249-256.                                              | 1.4 | 8         |
| 124 | Free-energy calculations for fluid and solid phases by molecular simulation. Fluid Phase Equilibria, 2002, 194-197, 219-226.                                                  | 1.4 | 3         |
| 125 | Web-based technologies for teaching and using molecular simulation. Fluid Phase Equilibria, 2002, 194-197, 327-335.                                                           | 1.4 | 18        |
| 126 | Accuracy of free-energy perturbation calculations in molecular simulation. II. Heuristics. Journal of Chemical Physics, 2001, 115, 6866-6875.                                 | 1.2 | 89        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling. Journal of Chemical Physics, 2001, 114, 7303-7311.                                                         | 1.2 | 135       |
| 128 | A general-purpose biasing scheme for Monte Carlo simulation of associating fluids. Journal of Chemical Physics, 2001, 114, 8752-8762.                                                              | 1.2 | 42        |
| 129 | Exact solution for the singlet density distributions and second-order correlations of normal-mode coordinates for hard rods in one dimension. Journal of Chemical Physics, 1999, 110, 11390-11398. | 1.2 | 5         |
| 130 | Freezing of polydisperse hard spheres. Physical Review E, 1999, 59, 618-622.                                                                                                                       | 0.8 | 152       |
| 131 | Optimal intermediates in staged free energy calculations. Journal of Chemical Physics, 1999, 111, 4414-4423.                                                                                       | 1.2 | 52        |
| 132 | A comparison of molecular-based models to determine vapor–liquid phase coexistence in hydrogen<br>fluoride. Fluid Phase Equilibria, 1999, 158-160, 37-47.                                          | 1.4 | 27        |
| 133 | Evaluation of a locus of azeotropes by molecular simulation. AICHE Journal, 1999, 45, 2237-2244.                                                                                                   | 1.8 | 11        |
| 134 | Modeling the Monte Carlo simulation of associating fluids. Journal of Chemical Physics, 1999, 110, 5493-5502.                                                                                      | 1.2 | 17        |
| 135 | Improved Thermodynamic Equation of State for Hydrogen Fluoride. Industrial & Engineering<br>Chemistry Research, 1999, 38, 4125-4129.                                                               | 1.8 | 21        |
| 136 | Thermodynamic Integration Along Coexistence Lines. Theoretical and Computational Chemistry, 1999, 7, 99-127.                                                                                       | 0.2 | 2         |
| 137 | Precision and accuracy of staged free-energy perturbation methods for computing the chemical potential by molecular simulation. Fluid Phase Equilibria, 1998, 150-151, 41-49.                      | 1.4 | 80        |
| 138 | Vapor–liquid equilibria and heat effects of hydrogen fluoride from molecular simulation. Journal of<br>Chemical Physics, 1998, 109, 4015-4027.                                                     | 1.2 | 23        |
| 139 | Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation. Molecular Physics, 1997, 92, 973-996.                                           | 0.8 | 175       |
| 140 | Perturbation solution to the convection–diffusion equation with moving fronts. AICHE Journal, 1997, 43, 631-644.                                                                                   | 1.8 | 3         |
| 141 | Potential for use of liquid crystals as dynamically tunable electrophoretic media. AICHE Journal, 1997,<br>43, 1366-1368.                                                                          | 1.8 | 2         |
| 142 | Thermal properties of hydrogen fluoride from EOS+ association model. AICHE Journal, 1997, 43, 2381-2384.                                                                                           | 1.8 | 12        |
| 143 | Tracer diffusion in perfectly aligned liquid crystalline phases Kinetic theory and molecular dynamics simulations. Molecular Physics, 1997, 91, 993-1004.                                          | 0.8 | 3         |
| 144 | Convection-diffusion of solutes in media with piecewise constant transport properties. Chemical<br>Engineering Science, 1996, 51, 5299-5312.                                                       | 1.9 | 6         |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Simulation of adsorption of liquid mixtures of N2 and O2 in a model faujasite cavity at 77.5 K.<br>Adsorption, 1996, 2, 41-50.                                                       | 1.4 | 17        |
| 146 | The isotropic–nematic phase transition in uniaxial hard ellipsoid fluids: Coexistence data and the approach to the Onsager limit. Journal of Chemical Physics, 1996, 105, 2837-2849. | 1.2 | 116       |
| 147 | Monte Carlo study of freezing of polydisperse hard spheres. Physical Review E, 1996, 54, 634-643.                                                                                    | 0.8 | 173       |
| 148 | Numerical study of freezing in polydisperse colloidal suspensions. Journal of Physics Condensed<br>Matter, 1996, 8, 9627-9631.                                                       | 0.7 | 14        |
| 149 | Transformation and topological reduction of cluster expansions usingm-bonds. Journal of Statistical Physics, 1995, 78, 877-892.                                                      | 0.5 | 1         |
| 150 | Thermodynamic and structural properties of model systems at solid-fluid coexistence. Molecular Physics, 1995, 85, 23-42.                                                             | 0.8 | 177       |
| 151 | A theory for the 1â€1/2 fluid. Journal of Chemical Physics, 1995, 103, 1599-1606.                                                                                                    | 1.2 | 3         |
| 152 | Molecular simulation in a pseudo grand canonical ensemble. Molecular Physics, 1995, 86, 139-147.                                                                                     | 0.8 | 37        |
| 153 | Thermodynamic and structural properties of model systems at solid-fluid coexistence. Molecular<br>Physics, 1995, 85, 43-59.                                                          | 0.8 | 278       |
| 154 | Solid-Fluid Coexistence for Inverse-Power Potentials. Physical Review Letters, 1995, 74, 122-125.                                                                                    | 2.9 | 130       |
| 155 | Efficient evaluation of three-phase coexistence lines. International Journal of Thermophysics, 1994, 15, 1073-1083.                                                                  | 1.0 | 16        |
| 156 | Coexistence diagrams of mixtures by molecular simulation. Chemical Engineering Science, 1994, 49, 2633-2645.                                                                         | 1.9 | 125       |
| 157 | Self-diffusion in the nematic and smectic A phases of an aligned fluid of hard spherocylinders.<br>Molecular Physics, 1994, 83, 101-112.                                             | 0.8 | 5         |
| 158 | Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Molecular Physics, 1993, 78, 1331-1336.                                    | 0.8 | 324       |
| 159 | Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. Journal of Chemical Physics, 1993, 98, 4149-4162.                          | 1.2 | 568       |
| 160 | Implementation of the Gibbs ensemble using a thermodynamic model for one of the coexisting phases.<br>Molecular Physics, 1993, 79, 39-52.                                            | 0.8 | 13        |
| 161 | Hard particles in narrow pores. Transferâ€matrix solution and the periodic narrow box. Journal of<br>Chemical Physics, 1993, 98, 4853-4861.                                          | 1.2 | 46        |
| 162 | Fluids confined to narrow pores: A low-dimensional approach. Physical Review A, 1992, 45, 939-952.                                                                                   | 1.0 | 18        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Oneâ€andâ€aâ€halfâ€fluid theory: A new approach to conformal solutions. Journal of Chemical Physics, 1991,<br>95, 7518-7525.                                                                     | 1.2 | 1         |
| 164 | Solid-Fluid Coexistence in Binary Hard Sphere Mixtures by Semigrand Monte Carlo Simulation.<br>Molecular Simulation, 1991, 7, 285-302.                                                           | 0.9 | 49        |
| 165 | Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water.<br>Journal of Computational Chemistry, 1990, 11, 1169-1180.                                   | 1.5 | 86        |
| 166 | A composition density functional theory for mixtures based upon an infinitely polydisperse reference.<br>II. Freezing in hard sphere mixtures. Journal of Chemical Physics, 1990, 92, 4417-4425. | 1.2 | 3         |
| 167 | A composition density functional theory for mixtures based upon an infinitely polydisperse reference.<br>I. Formalism and theory. Journal of Chemical Physics, 1990, 92, 658-666.                | 1.2 | 5         |
| 168 | Infinitely polydisperse fluids. Journal of Chemical Physics, 1989, 90, 439-447.                                                                                                                  | 1.2 | 31        |
| 169 | Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Molecular<br>Physics, 1988, 64, 1105-1131.                                                                | 0.8 | 233       |
| 170 | An efficient algorithm for the computation of pair correlation functions for hard spheres in the<br>Percus-Yevick theory. Molecular Physics, 1988, 64, 125-128.                                  | 0.8 | 10        |
| 171 | Nearly monodisperse fluids. I. Monte Carlo simulations of Lennardâ€Jones particles in a semigrand ensemble. Journal of Chemical Physics, 1987, 87, 4881-4890.                                    | 1.2 | 68        |
| 172 | Monte carlo simulation of continuous Lennard-Jones mixtures. Fluid Phase Equilibria, 1986, 29, 327-335.                                                                                          | 1.4 | 13        |