## Trygve HolmÃ<sub>y</sub>

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606896/publications.pdf Version: 2024-02-01



TRYCUE HOLMÃY

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Vitamin D and disease activity in multiple sclerosis before and during interferon-β treatment.<br>Neurology, 2012, 79, 267-273.                                                         | 1.5 | 113       |
| 2  | Epstein-Barr Virus in Systemic Lupus Erythematosus, Rheumatoid Arthritis and Multiple<br>Sclerosis—Association and Causation. Viruses, 2012, 4, 3701-3730.                              | 1.5 | 103       |
| 3  | Body size and the risk of multiple sclerosis in Norway and Italy: The EnvIMS study. Multiple Sclerosis<br>Journal, 2015, 21, 388-395.                                                   | 1.4 | 90        |
| 4  | Randomized trial of daily high-dose vitamin D <sub>3</sub> in patients with RRMS receiving subcutaneous interferon β-1a. Neurology, 2019, 93, e1906-e1916.                              | 1.5 | 88        |
| 5  | Sun exposure and multiple sclerosis risk in Norway and Italy: The EnvIMS study. Multiple Sclerosis<br>Journal, 2014, 20, 1042-1049.                                                     | 1.4 | 80        |
| 6  | 25-Hydroxyvitamin D in cerebrospinal fluid during relapse and remission of multiple sclerosis.<br>Multiple Sclerosis Journal, 2009, 15, 1280-1285.                                      | 1.4 | 79        |
| 7  | Cerebrospinal fluid CD4+T cells from a multiple sclerosis patient cross-recognize Epstein-Barr virus<br>and myelin basic protein. Journal of NeuroVirology, 2004, 10, 278-283.          | 1.0 | 70        |
| 8  | Vitamin D in the healthy and inflamed central nervous system: access and function. Journal of the Neurological Sciences, 2011, 311, 37-43.                                              | 0.3 | 66        |
| 9  | Immunogenicity and Safety of a Third SARS-CoV-2 Vaccine Dose in Patients With Multiple Sclerosis and<br>Weak Immune Response After COVID-19 Vaccination. JAMA Neurology, 2022, 79, 307. | 4.5 | 65        |
| 10 | Cerebrospinal fluid T cells from multiple sclerosis patients recognize autologous Epstein-Barr<br>virus–transformed B cells. Journal of NeuroVirology, 2004, 10, 52-56.                 | 1.0 | 61        |
| 11 | An Update on Vitamin D and Disease Activity in Multiple Sclerosis. CNS Drugs, 2019, 33, 1187-1199.                                                                                      | 2.7 | 59        |
| 12 | Timing of use of cod liver oil, a vitamin D source, and multiple sclerosis risk: The EnvIMS study.<br>Multiple Sclerosis Journal, 2015, 21, 1856-1864.                                  | 1.4 | 58        |
| 13 | Listeria monocytogenes infection associated with alemtuzumab – - a case for better preventive strategies. BMC Neurology, 2017, 17, 65.                                                  | 0.8 | 58        |
| 14 | Antibodies to Epstein-Barr virus and MRI disease activity in multiple sclerosis. Multiple Sclerosis<br>Journal, 2014, 20, 1833-1840.                                                    | 1.4 | 57        |
| 15 | Body mass index influence interferon-beta treatment response in multiple sclerosis. Journal of Neuroimmunology, 2015, 288, 92-97.                                                       | 1.1 | 56        |
| 16 | Vitamin D status modulates the immune response to Epstein Barr virus: Synergistic effect of risk<br>factors in multiple sclerosis. Medical Hypotheses, 2008, 70, 66-69.                 | 0.8 | 55        |
| 17 | B cell depletion in the treatment of multiple sclerosis. Expert Opinion on Biological Therapy, 2019, 19, 261-271.                                                                       | 1.4 | 50        |
| 18 | High BMI is associated with low ALS risk. Neurology, 2019, 93, e424-e432.                                                                                                               | 1.5 | 48        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Multiple sclerosis: immunopathogenesis and controversies in defining the cause. Current Opinion in Infectious Diseases, 2008, 21, 271-278.                                                                                                              | 1.3 | 45        |
| 20 | Effect of high-dose vitamin D <sub>3</sub> supplementation on antibody responses against<br>Epstein–Barr virus in relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 2017, 23,<br>395-402.                                             | 1.4 | 43        |
| 21 | Retinol levels are associated with magnetic resonance imaging outcomes in multiple sclerosis.<br>Multiple Sclerosis Journal, 2013, 19, 451-457.                                                                                                         | 1.4 | 39        |
| 22 | Humoral immunity to SARS-CoV-2 mRNA vaccination in multiple sclerosis: the relevance of time since<br>last rituximab infusion and first experience from sporadic revaccinations. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2023, 94, 19-22. | 0.9 | 39        |
| 23 | Stiff person syndrome associated with lower motor neuron disease and infiltration of cytotoxic T cells in the spinal cord. Clinical Neurology and Neurosurgery, 2009, 111, 708-712.                                                                     | 0.6 | 37        |
| 24 | Vitamin D supplementation and systemic inflammation in relapsing-remitting multiple sclerosis.<br>Journal of Neurology, 2015, 262, 2713-2721.                                                                                                           | 1.8 | 36        |
| 25 | Level of education and multiple sclerosis risk after adjustment for known risk factors: The EnvIMS study. Multiple Sclerosis Journal, 2016, 22, 104-111.                                                                                                | 1.4 | 35        |
| 26 | Adverse events with fatal outcome associated with alemtuzumab treatment in multiple sclerosis. BMC Research Notes, 2019, 12, 497.                                                                                                                       | 0.6 | 35        |
| 27 | Recent progress in maintenance treatment of neuromyelitis optica spectrum disorder. Journal of Neurology, 2021, 268, 4522-4536.                                                                                                                         | 1.8 | 34        |
| 28 | Inflammation Markers in Multiple Sclerosis: CXCL16 Reflects and May Also Predict Disease Activity.<br>PLoS ONE, 2013, 8, e75021.                                                                                                                        | 1.1 | 32        |
| 29 | The Discovery of Oligoclonal Bands: A 50-Year Anniversary. European Neurology, 2009, 62, 311-315.                                                                                                                                                       | 0.6 | 31        |
| 30 | Monomethyl fumarate augments NK cell lysis of tumor cells through degranulation and the upregulation of NKp46 and CD107a. Cellular and Molecular Immunology, 2016, 13, 57-64.                                                                           | 4.8 | 31        |
| 31 | Targeting NAD+ in translational research to relieve diseases and conditions of metabolic stress and ageing. Mechanisms of Ageing and Development, 2020, 186, 111208.                                                                                    | 2.2 | 31        |
| 32 | Season of infectious mononucleosis and risk of multiple sclerosis at different latitudes; the EnvIMS<br>Study. Multiple Sclerosis Journal, 2014, 20, 669-674.                                                                                           | 1.4 | 30        |
| 33 | The immunological basis for treatment of stiff person syndrome. Journal of Neuroimmunology, 2011, 231, 55-60.                                                                                                                                           | 1.1 | 27        |
| 34 | Fat-soluble vitamins as disease modulators in multiple sclerosis. Acta Neurologica Scandinavica, 2013,<br>127, 16-23.                                                                                                                                   | 1.0 | 26        |
| 35 | Month of birth and risk of multiple sclerosis: confounding and adjustments. Annals of Clinical and Translational Neurology, 2014, 1, 141-144.                                                                                                           | 1.7 | 26        |
| 36 | Increasing serum levels of vitamin A, D and E are associated with alterations of different<br>inflammation markers in patients with multiple sclerosis. Journal of Neuroimmunology, 2014, 271,<br>60-65.                                                | 1.1 | 25        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vitamin D sensitive EBNA-1 specific T cells in the cerebrospinal fluid of patients with multiple sclerosis. Journal of Neuroimmunology, 2011, 240-241, 87-96.                                                                                                           | 1.1 | 23        |
| 38 | Alpha-tocopherol and MRI Outcomes in Multiple Sclerosis – Association and Prediction. PLoS ONE, 2013, 8, e54417.                                                                                                                                                        | 1.1 | 22        |
| 39 | Intrathecal BCR transcriptome in multiple sclerosis versus other neuroinflammation: Equally diverse and compartmentalized, but more mutated, biased and overlapping with the proteome. Clinical Immunology, 2015, 160, 211-225.                                         | 1.4 | 22        |
| 40 | High dose vitamin D supplementation does not affect biochemical bone markers in multiple sclerosis –<br>a randomized controlled trial. BMC Neurology, 2017, 17, 67.                                                                                                     | 0.8 | 22        |
| 41 | Iron and copper in progressive demyelination – New lessons from Skogholt's disease. Journal of Trace<br>Elements in Medicine and Biology, 2015, 31, 183-187.                                                                                                            | 1.5 | 21        |
| 42 | No association of tobacco use and disease activity in multiple sclerosis. Neurology:<br>Neuroimmunology and NeuroInflammation, 2016, 3, e260.                                                                                                                           | 3.1 | 21        |
| 43 | Cerebrospinal fluid T cell clones from patients with multiple sclerosis: recognition of idiotopes on<br>monoclonal IgG secreted by autologous cerebrospinal fluid B cells. European Journal of Immunology,<br>2005, 35, 1786-1794.                                      | 1.6 | 20        |
| 44 | Vitamin D supplementation and monitoring in multiple sclerosis: who, when and wherefore. Acta<br>Neurologica Scandinavica, 2012, 126, 63-69.                                                                                                                            | 1.0 | 20        |
| 45 | Vitamin D in multiple sclerosis: implications for assessment and treatment. Expert Review of Neurotherapeutics, 2012, 12, 1101-1112.                                                                                                                                    | 1.4 | 19        |
| 46 | Vitamin D status and effect of interferon-β1a treatment on MRI activity and serum inflammation markers in relapsing-remitting multiple sclerosis. Journal of Neuroimmunology, 2015, 280, 21-28.                                                                         | 1.1 | 19        |
| 47 | Barriers and Facilitators Related to Rehabilitation Stays in Multiple Sclerosis. International Journal of MS Care, 2015, 17, 122-129.                                                                                                                                   | 0.4 | 19        |
| 48 | Antiepileptic and Antidepressive Polypharmacy in Patients with Multiple Sclerosis. Multiple Sclerosis<br>International, 2015, 2015, 1-7.                                                                                                                                | 0.4 | 18        |
| 49 | Negative interaction between smoking and EBV in the risk of multiple sclerosis: The EnvIMS study.<br>Multiple Sclerosis Journal, 2017, 23, 1018-1024.                                                                                                                   | 1.4 | 18        |
| 50 | Assessing amyotrophic lateral sclerosis prevalence in Norway from 2009 to 2015 from compulsory nationwide health registers. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 303-310.                                                           | 1.1 | 18        |
| 51 | Vitamin D supplementation and neurofilament light chain in multiple sclerosis. Acta Neurologica<br>Scandinavica, 2019, 139, 172-176.                                                                                                                                    | 1.0 | 18        |
| 52 | Sequence variations in <i>C9orf72</i> downstream of the hexanucleotide repeat region and its effect<br>on repeat-primed PCR interpretation: a large multinational screening study. Amyotrophic Lateral<br>Sclerosis and Frontotemporal Degeneration, 2017, 18, 256-264. | 1.1 | 17        |
| 53 | Diffuse alveolar hemorrhage during alemtuzumab infusion in a patient with multiple sclerosis: a case report. BMC Pharmacology & Toxicology, 2018, 19, 75.                                                                                                               | 1.0 | 17        |
| 54 | Association of Body Mass Index in Adolescence and Young Adulthood and Long-term Risk of Multiple<br>Sclerosis. Neurology, 2021, 97, e2253-e2261.                                                                                                                        | 1.5 | 17        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An update on cladribine for relapsing-remitting multiple sclerosis. Expert Opinion on<br>Pharmacotherapy, 2017, 18, 1627-1635.                                                         | 0.9 | 16        |
| 56 | α-Linolenic acid is associated with MRI activity in a prospective cohort of multiple sclerosis patients.<br>Multiple Sclerosis Journal, 2019, 25, 987-993.                             | 1.4 | 16        |
| 57 | Persistence of intrathecal oligoclonal B cells and IgG in multiple sclerosis. Journal of Neuroimmunology, 2019, 333, 576966.                                                           | 1.1 | 16        |
| 58 | ALS: Cytokine profile in cerebrospinal fluid Tâ€cell clones. Amyotrophic Lateral Sclerosis and Other<br>Motor Neuron Disorders, 2006, 7, 183-186.                                      | 2.3 | 15        |
| 59 | Intravascular Large B-Cell Lymphoma Presenting as Cerebellar and Cerebral Infarction. Archives of Neurology, 2007, 64, 754.                                                            | 4.9 | 14        |
| 60 | Mortality trends of amyotrophic lateral sclerosis in Norway 1951–2014: an age–period–cohort study.<br>Journal of Neurology, 2016, 263, 2378-2385.                                      | 1.8 | 14        |
| 61 | Perinatal Depression and Anxiety in Women With Multiple Sclerosis. Neurology, 2021, 96, e2789-e2800.                                                                                   | 1.5 | 14        |
| 62 | Idiotope-specific CD4+ T cells induce apoptosis of human oligodendrocytes. Journal of Autoimmunity, 2009, 32, 125-132.                                                                 | 3.0 | 13        |
| 63 | Serum levels of leptin and adiponectin are not associated with disease activity or treatment response in multiple sclerosis. Journal of Neuroimmunology, 2018, 323, 73-77.             | 1.1 | 13        |
| 64 | Low vitamin D, but not tobacco use or high BMI, is associated with long-term disability progression in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 50, 102801. | 0.9 | 13        |
| 65 | Selective intrathecal enrichment of G1m1â€positive B cells in multiple sclerosis. Annals of Clinical and<br>Translational Neurology, 2017, 4, 756-761.                                 | 1.7 | 12        |
| 66 | In Silico Prediction Analysis of Idiotope-Driven T–B Cell Collaboration in Multiple Sclerosis.<br>Frontiers in Immunology, 2017, 8, 1255.                                              | 2.2 | 12        |
| 67 | B-cell composition in the blood and cerebrospinal fluid of multiple sclerosis patients treated with<br>dimethyl fumarate. Multiple Sclerosis and Related Disorders, 2018, 26, 90-95.   | 0.9 | 12        |
| 68 | Human Cysteine Cathepsins Degrade Immunoglobulin G In Vitro in a Predictable Manner. International<br>Journal of Molecular Sciences, 2019, 20, 4843.                                   | 1.8 | 12        |
| 69 | Sex ratio in multiple sclerosis mortality over 65Âyears; an age-period-cohort analysis in Norway.<br>Journal of Neurology, 2018, 265, 1295-1302.                                       | 1.8 | 11        |
| 70 | Hereditary motor neuron disease in a large Norwegian family with a "H46R―substitution in the superoxide dismutase 1 gene. Neuromuscular Disorders, 2012, 22, 511-521.                  | 0.3 | 10        |
| 71 | Experiences with using mechanical in–exsufflation in amyotrophic lateral sclerosis. European<br>Journal of Physiotherapy, 2013, 15, 201-207.                                           | 0.7 | 10        |
| 72 | Severe multiple sclerosis reactivation after gonadotropin treatment. Multiple Sclerosis and Related<br>Disorders, 2018, 22, 38-40.                                                     | 0.9 | 10        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Serum sickness following rituximab therapy in multiple sclerosis. Neurology: Clinical Practice, 2019, 9, 519-521.                                                                                 | 0.8 | 10        |
| 74 | Stereotyped B ell responses are linked to IgG constant region polymorphisms in multiple sclerosis.<br>European Journal of Immunology, 2022, 52, 550-565.                                          | 1.6 | 10        |
| 75 | Slowly Progressing Amyotrophic Lateral Sclerosis Caused by H46R SOD1 Mutation. European Neurology, 2007, 58, 57-58.                                                                               | 0.6 | 9         |
| 76 | G127R: A novel SOD1 mutation associated with rapidly evolving ALS and severe pain syndrome.<br>Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 478-480.                 | 2.3 | 9         |
| 77 | The idiotype connection: linking infection and multiple sclerosis. Trends in Immunology, 2010, 31, 56-62.                                                                                         | 2.9 | 9         |
| 78 | Natural Variation of Vitamin D and Neurofilament Light Chain in Relapsing-Remitting Multiple<br>Sclerosis. Frontiers in Neurology, 2020, 11, 329.                                                 | 1.1 | 9         |
| 79 | CD4+ T Cells in the Blood of MS Patients Respond to Predicted Epitopes From B cell Receptors Found in Spinal Fluid. Frontiers in Immunology, 2020, 11, 598.                                       | 2.2 | 8         |
| 80 | Genetic and Molecular Approaches to the Immunopathogenesis of Multiple Sclerosis: An Update.<br>Current Molecular Medicine, 2009, 9, 591-611.                                                     | 0.6 | 7         |
| 81 | Can vitamin D reduce inflammation in relapsing-remitting multiple sclerosis?. Expert Review of Neurotherapeutics, 2016, 16, 233-235.                                                              | 1.4 | 6         |
| 82 | Ethical challenges in tracheostomy-assisted ventilation in amyotrophic lateral sclerosis. Journal of<br>Neurology, 2018, 265, 2730-2736.                                                          | 1.8 | 6         |
| 83 | Extensive Multiple Sclerosis Reactivation after Switching from Fingolimod to Rituximab. Case Reports<br>in Neurological Medicine, 2018, 2018, 1-3.                                                | 0.3 | 6         |
| 84 | Infectious causes of multiple sclerosis. Lancet Neurology, The, 2005, 4, 268.                                                                                                                     | 4.9 | 5         |
| 85 | A Norse Contribution to the History of Neurological Diseases. European Neurology, 2006, 55, 57-58.                                                                                                | 0.6 | 5         |
| 86 | Pasienttilfredshet ved rehabilitering av pasienter med multippel sklerose. Tidsskrift for Den Norske<br>Laegeforening, 2012, 132, 523-525.                                                        | 0.2 | 5         |
| 87 | Severe inflammatory disease activity 14Âmonths after cessation of Natalizumab in a patient with Leber's<br>optic neuropathy and multiple sclerosis – a case report. BMC Neurology, 2016, 16, 197. | 0.8 | 4         |
| 88 | Strong tuberculin response after BCG vaccination is associated with low multiple sclerosis risk: a population-based cohort study. International Journal of Epidemiology, 2022, 51, 1637-1644.     | 0.9 | 4         |
| 89 | Association of adverse childhood experiences with the development of multiple sclerosis. Journal of<br>Neurology, Neurosurgery and Psychiatry, 2022, 93, 645-650.                                 | 0.9 | 4         |
| 90 | Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 481-488.                                                  | 1.1 | 3         |

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | WT1 and interferon-β-vitamin D association in MS: a longitudinal study. Acta Neurologica Scandinavica, 2016, 133, 309-312.                                         | 1.0 | 2         |
| 92 | G1m1 predominance of intrathecal virusâ€specific antibodies in multiple sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 1303-1309.             | 1.7 | 2         |
| 93 | Reply to comment: Month of birth and risk of multiple sclerosis: confounding and adjustments.<br>Annals of Clinical and Translational Neurology, 2014, 1, 376-377. | 1.7 | 1         |
| 94 | Skogholt's disease—A tauopathy precipitated by iron and copper?. Journal of Trace Elements in<br>Medicine and Biology, 2022, 70, 126915.                           | 1.5 | 1         |
| 95 | Three Elling Solheim Poems. Academic Medicine, 2006, 81, 474.                                                                                                      | 0.8 | 0         |