Olivier Coulembier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives. Progress in Polymer Science, 2006, 31, 723-747.	11.8	337
2	Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chemical Society Reviews, 2013, 42, 1312-1336.	18.7	302
3	Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Progress in Polymer Science, 2014, 39, 1144-1164.	11.8	189
4	Organocatalytic depolymerization of poly(ethylene terephthalate). Journal of Polymer Science Part A, 2011, 49, 1273-1281.	2.5	172
5	Controllable Processes for Generating Large Single Crystals of Poly(3â€hexylthiophene). Angewandte Chemie - International Edition, 2012, 51, 11131-11135.	7.2	165
6	Probeâ€Based 3â€D Nanolithography Using Selfâ€Amplified Depolymerization Polymers. Advanced Materials, 2010, 22, 3361-3365.	11.1	146
7	Alcohol Adducts ofN-Heterocyclic Carbenes:Â Latent Catalysts for the Thermally-Controlled Living Polymerization of Cyclic Esters. Macromolecules, 2006, 39, 5617-5628.	2.2	144
8	Functionalized cyclic carbonates: from synthesis and metal-free catalyzed ring-opening polymerization to applications. Polymer Chemistry, 2011, 2, 528-533.	1.9	144
9	Latent, Thermally Activated Organic Catalysts for the On-Demand Living Polymerization of Lactide. Angewandte Chemie - International Edition, 2005, 44, 4964-4968.	7.2	142
10	Update and Challenges in Carbon Dioxideâ€Based Polycarbonate Synthesis. ChemSusChem, 2020, 13, 469-487.	3.6	121
11	Hydrogenâ€Bonding Catalysts Based on Fluorinated Alcohol Derivatives for Living Polymerization. Angewandte Chemie - International Edition, 2009, 48, 5170-5173.	7.2	107
12	Organocatalysis Paradigm Revisited: Are Metal-Free Catalysts Really Harmless?. Biomacromolecules, 2015, 16, 507-514.	2.6	106
13	Cyclic Polymers by Ring losure Strategies. Angewandte Chemie - International Edition, 2016, 55, 13944-13958.	7.2	102
14	Metal-Free Catalyzed Ring-Opening Polymerization of β-Lactones: Synthesis of Amphiphilic Triblock Copolymers Based on Poly(dimethylmalic acid). Macromolecules, 2006, 39, 4001-4008.	2.2	86
15	Organocatalytic ring-opening polymerization of l-lactide in bulk: A long standing challenge. European Polymer Journal, 2017, 95, 628-634.	2.6	83
16	Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography. Macromolecules, 2010, 43, 572-574.	2.2	79
17	Oneâ€Pot Synthesis of Wellâ€Defined Amphiphilic and Adaptative Block Copolymers via Versatile Combination of "Click―Chemistry and ATRP. Macromolecular Rapid Communications, 2007, 28, 2151-2158.	2.0	76
18	Controlled room temperature ROP of L-lactide by ICl3: a simple halogen-bonding catalyst. Polymer Chemistry, 2010, 1, 434-437.	1.9	72

#	Article	IF	CITATIONS
	Amphiphilic Poly(<scp>d</scp> - or) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 752 Td (<scp>l</scp> -lactide)-<	i>b-p	oly(<i>N</i>
19	Copolymers: Controlled Synthesis, Characterization, and Stereocomplex Formation. Biomacromolecules, 2009, 10, 1217-1223.	2.6	68
20	Influence of Chain Topology (Cyclic versus Linear) on the Nucleation and Isothermal Crystallization of Poly(<scp>l</scp> -lactide) and Poly(<scp>d</scp> -lactide). Macromolecules, 2018, 51, 1718-1732.	2.2	68
21	Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. Journal of Polymer Science, 2020, 58, 1481-1502.	2.0	67
22	MALDIâ€ToF analysis of polythiophene: use of <i>trans</i> â€2â€{3â€(4â€ <i>t</i> â€butylâ€phenyl)â€2â€methylâ 2â€propenylidene]malononitrile—DCTB—as matrix. Journal of Mass Spectrometry, 2011, 46, 237-246.	ۥ 0.7	62
23	Isoselective Ring-Opening Polymerization of <i>rac</i> -Lactide from Chiral Takemoto's Organocatalysts: Elucidation of Stereocontrol. ACS Macro Letters, 2018, 7, 1413-1419.	2.3	62
24	A Distinctive Organocatalytic Approach to Complex Macromolecular Architectures. Angewandte Chemie - International Edition, 2007, 46, 4719-4721.	7.2	52
25	A tandem mass spectrometry-based method to assess the architectural purity of synthetic polymers: a case of a cyclic polylactide obtained by click chemistry. Polymer Chemistry, 2015, 6, 64-69.	1.9	47
26	Synthesis of poly(<scp>l</scp> -lactide) and gradient copolymers from a <scp>l</scp> -lactide/trimethylene carbonate eutectic melt. Chemical Science, 2012, 3, 723-726.	3.7	45
27	New Amphiphilic Poly[(R,S)-β-malic acid-b-ε-caprolactone] Diblock Copolymers by Combining Anionic and Coordinationâ^'Insertion Ring-Opening Polymerization. Macromolecules, 2002, 35, 9896-9903.	2.2	44
28	Controlled Synthesis of an ABC Miktoarm Star-Shaped Copolymer by Sequential Ring-Opening Polymerization of Ethylene Oxide, Benzyl β-Malolactonate, and ε-Caprolactone. Macromolecules, 2005, 38, 10650-10657.	2.2	44
29	Synthesis of adaptative and amphiphilic polymer model conetworks by versatile combination of ATRP, ROP, and "Click chemistry― Journal of Polymer Science Part A, 2008, 46, 4997-5013.	2.5	43
30	Synthesis and Characterization of Nanocomposites Based on Functional Regioregular Poly(3â€hexylthiophene) and Multiwall Carbon Nanotubes. Macromolecular Rapid Communications, 2010, 31, 1427-1434.	2.0	43
31	Synthesis and Supramolecular Organization of Regioregular Polythiophene Block Oligomers. Journal of Organic Chemistry, 2010, 75, 1561-1568.	1.7	43
32	High Molecular Weight Poly(α,α′,β-trisubstituted β-lactones) As Generated by Metal-Free Phosphazene Catalysts Macromolecules, 2010, 43, 10291-10296.	2.2	43
33	Size Dependence of the Folding of Multiply Charged Sodium Cationized Polylactides Revealed by Ion Mobility Mass Spectrometry and Molecular Modelling. Chemistry - A European Journal, 2011, 17, 9738-9745.	1.7	41
34	External and Reversible CO ₂ Regulation of Ring-Opening Polymerizations Based on a Primary Alcohol Propagating Species. Macromolecules, 2014, 47, 486-491.	2.2	40
35	Regioregular poly(3-hexylthiophene)-poly(ε-caprolactone) block copolymers: Controlled synthesis, microscopic morphology, and charge transport properties. Organic Electronics, 2010, 11, 767-774. 	1.4	39
36	Synthesis of Biomimetic Poly(hydroxybutyrate):  Alkoxy- and Carboxytriazolines as Latent Ionic Initiator. Macromolecules, 2007, 40, 8560-8567.	2.2	37

#	Article	IF	CITATIONS
37	Ambient temperature catalyst-free light-induced preparation of macrocyclic aliphatic polyesters. Chemical Communications, 2014, 50, 2024.	2.2	37
38	Polyether Synthesis by Bulk Self-Condensation of Diols Catalyzed by Non-Eutectic Acid–Base Organocatalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 4103-4111.	3.2	37
39	Molecular Weight Dependence of Exciton Diffusion in Poly(3â€hexylthiophene). Advanced Energy Materials, 2013, 3, 1445-1453.	10.2	36
40	Polymers for Traveling Wave Ion Mobility Spectrometry Calibration. Journal of the American Society for Mass Spectrometry, 2017, 28, 2483-2491.	1.2	36
41	Thermal degradation of poly(l-lactide): Accelerating effect of residual DBU-based organic catalysts. Polymer Degradation and Stability, 2011, 96, 739-744.	2.7	35
42	One-step synthesis of polylactide macrocycles from sparteine-initiated ROP. Polymer Chemistry, 2014, 5, 2103.	1.9	35
43	Efficiency of DBU/iodine cooperative dual catalysis for the solvent-free synthesis of five-membered cyclic carbonates under atmospheric CO2 pressure. Journal of CO2 Utilization, 2015, 10, 7-11.	3.3	35
44	Synthesis of Amphiphilic Poly((R,S)-β-malic acid)-graft-poly(ε-caprolactone): "Grafting From―and "Grafting Through―Approaches. Macromolecules, 2005, 38, 3141-3150.	2.2	34
45	Imidazolium end-functionalized poly(l-lactide) for efficient carbon nanotube dispersion. Chemical Communications, 2010, 46, 5527.	2.2	34
46	An imidazole-based organocatalyst designed for bulk polymerization of lactide isomers: inspiration from Nature. Chemical Communications, 2012, 48, 11695.	2.2	33
47	Carbohydrateâ€based amphiphilic diblock copolymers: Synthesis, characterization, and aqueous properties. Journal of Polymer Science Part A, 2008, 46, 3662-3672.	2.5	32
48	Stereocomplexed Materials Based on Poly(3-hexylthiophene)- <i>b</i> -poly(lactide) Block Copolymers: Synthesis by Organic Catalysis, Thermal Properties, and Microscopic Morphology. Macromolecules, 2010, 43, 8957-8964.	2.2	32
49	Controlled synthesis of amphiphilic block copolymers based on polyester and poly(amino) Tj ETQq1 1 0.784314 68, 990-1003.	rgBT /Ove 2.0	rlock 10 Tf 50 31
50	Porphyrins Fused to Nâ€Heterocyclic Carbenes (NHCs): Modulation of the Electronic and Catalytic Properties of NHCs by the Central Metal of the Porphyrin. Chemistry - A European Journal, 2013, 19, 15652-15660.	1.7	31
51	Selective Organocatalytic Preparation of Trimethylene Carbonate from Oxetane and Carbon Dioxide. ACS Catalysis, 2020, 10, 5399-5404.	5.5	31
52	Traces do matter—Purity of 4-methyl-2-oxetanone and its effect on anionic ring-opening polymerization as evidenced by phosphazene superbase catalysis. Reactive and Functional Polymers, 2012, 72, 509-520.	2.0	29
53	CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrinâ€ĐWCNTs Hybrid Materials. Advanced Functional Materials, 2012, 22, 3209-3222.	7.8	28
54	Ammonium betaines: efficient ionic nucleophilic catalysts for the ring-opening polymerization of <scp>l</scp> -lactide and cyclic carbonates. Chemical Communications, 2014, 50, 10098-10101.	2.2	28

#	Article	IF	CITATIONS
55	A one-pot two-step efficient metal-free process for the generation of PEO-b-PCL-b-PLA amphiphilic triblock copolymers. RSC Advances, 2014, 4, 10028.	1.7	28
56	Development of Inherently Flame—Retardant Phosphorylated PLA by Combination of Ring-Opening Polymerization and Reactive Extrusion. Materials, 2020, 13, 13.	1.3	28
57	Novel Biodegradable Adaptive Hydrogels: Controlled Synthesis and Full Characterization of the Amphiphilic Coâ€Networks. Chemistry - A European Journal, 2008, 14, 6369-6378.	1.7	27
58	Mechanistic study of the collision-induced dissociation of sodium-cationized polylactide oligomers: A joint experimental and theoretical investigation. Journal of the American Society for Mass Spectrometry, 2010, 21, 1159-1168.	1.2	27
59	Deposition of porous titanium oxide thin films as anode material for dye sensitized solar cells. Vacuum, 2015, 114, 213-220.	1.6	27
60	Isomorphic Polyoxyalkylene Copolyethers Obtained by Copolymerization of Aliphatic Diols. Macromolecules, 2019, 52, 3506-3515.	2.2	27
61	Bulk Organocatalytic Synthetic Access to Statistical Copolyesters from <scp>l</scp> -Lactide and ε-Caprolactone Using Benzoic Acid. Biomacromolecules, 2019, 20, 1965-1974.	2.6	26
62	Organocatalysis applied to the ringâ€opening polymerization of βâ€lactones: A brief overview. Journal of Polymer Science Part A, 2019, 57, 657-672.	2.5	26
63	Metal-free synthesis of poly(trimethylene carbonate) by efficient valorization of carbon dioxide. Green Chemistry, 2019, 21, 472-477.	4.6	24
64	From Jellyfish Macromolecular Architectures to Nanodoughnut Self-Assembly. Macromolecules, 2010, 43, 575-579.	2.2	22
65	Synthesis and Characterization of Double Crystalline Cyclic Diblock Copolymers of Poly(εâ€caprolactone) and Poly(<scp>l</scp> (<scp>d</scp>)″actide) (<i>c</i> (PCLâ€ <i>b</i> ―PL(D)LA)). Macromolecular Rapid Communications, 2016, 37, 1676-1681.	2.0	22
66	Benzoic Acid as an Efficient Organocatalyst for the Statistical Ring-Opening Copolymerization of Îμ-Caprolactone and <scp>L</scp> -Lactide: A Computational Investigation. Macromolecules, 2019, 52, 9238-9247.	2.2	22
67	Synthesis and characterization of carboxystyryl end-functionalized poly(3-hexylthiophene)/TiO2 hybrids in view of photovoltaic applications. Synthetic Metals, 2012, 162, 1615-1622.	2.1	21
68	Benzoic acid-organocatalyzed ring-opening (co)polymerization (ORO(c)P) of <scp>l</scp> -lactide and Îμ-caprolactone under solvent-free conditions: from simplicity to recyclability. Green Chemistry, 2018, 20, 5385-5396.	4.6	21
69	Copper-Catalyzed Dehydrogenative Polycondensation of a Bis-Aniline Hexylthiophene-Based Monomer: A Kinetically Controlled Air-Tolerant Process. Macromolecules, 2012, 45, 9547-9550.	2.2	20
70	Reinvestigation of the mechanism of polymerization of β-butyrolactone from 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Polymer Chemistry, 2018, 9, 1840-1847.	1.9	20
71	A chiral thiourea and a phosphazene for fast and stereoselective organocatalytic ring-opening-polymerization of racemic lactide. Chemical Communications, 2021, 57, 3777-3780.	2.2	20
72	Control over molar mass, dispersity, end-groups and kinetics in cyclopolymerization of ortho-phthalaldehyde: adapted choice of a phosphazene organocatalyst. Polymer Chemistry, 2014, 5, 706-711.	1.9	19

#	Article	IF	CITATIONS
73	Synthesis and characterization of original 2-(dimethylamino)ethyl methacrylate/poly(ethyleneglycol) star-copolymers. European Polymer Journal, 2008, 44, 3715-3723.	2.6	18
74	Dual Versatility of Triazolium-Based Cyclic Carbonate Inimer: From Homopolymerization to On-Demand Thermally Activated Initiating Site. Macromolecules, 2011, 44, 7493-7498.	2.2	18
75	Novel regioregular poly(3-hexylthiophene)-based polycationic block copolymers. Polymer Bulletin, 2011, 66, 51-64.	1.7	18
76	Synthesis and characterization of poly (Îμ-caprolactam-co-lactide) polyesteramides using BrÃ,nsted acid or BrÃ,nsted base organocatalyst. European Polymer Journal, 2017, 95, 650-659.	2.6	18
77	Improving the Performance of Batteries by Using Multiâ€₽yrene PTMA Structures. Batteries and Supercaps, 2018, 1, 102-109.	2.4	18
78	Synthesis and Micellization Properties of Novel Symmetrical Poly(ɛ-caprolactone-b-[R,S]β-malic) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50
79	4â€dimethylaminopyridineâ€based organoactivation: From simple esterification to lactide ringâ€opening "Living―polymerization. Journal of Polymer Science Part A, 2012, 50, 1672-1680.	2.5	17
80	Stereoretention in the Bulk ROP of <scp>l</scp> -Lactide Guided by a Thermally Stable Organocatalyst. Macromolecules, 2021, 54, 6214-6225.	2.2	17
81	Macrocyclic regioregular poly(3-hexylthiophene): from controlled synthesis to nanotubular assemblies. Polymer Chemistry, 2013, 4, 237-241.	1.9	16
82	A Sunlight-Induced Click Reaction as an Efficient Route to Cyclic Aliphatic Polyesters. Macromolecular Chemistry and Physics, 2015, 216, 1227-1234.	1.1	16
83	Self-assembled conjugated polyelectrolyte–surfactant complexes as efficient cathode interlayer materials for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2015, 3, 23905-23916.	5.2	16
84	Synthesis of Polyphthalaldehyde-Based Block Copolymers: Utilization of a Thermo-Sacrificial Segment for an Easy Access to Fine-Tuned Poly(3-hexylthiophene) Nanostructured Films. Macromolecules, 2016, 49, 3001-3008.	2.2	16
85	Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (-lactide): Nucleation, plasticization and topological effects. International Journal of Biological Macromolecules, 2021, 186, 255-267.	3.6	16
86	Inverse dependencies on the polymerization rate in atom transfer radical polymerization of N-isopropylacrylamide in aqueous medium. Reactive and Functional Polymers, 2013, 73, 484-491.	2.0	15
87	Scope and limitations of ring-opening copolymerization of trimethylene carbonate with substituted \hat{I}^3 -thiolactones. Polymer Chemistry, 2018, 9, 2769-2774.	1.9	15
88	Stereoselective ROP of rac- and meso-Lactides Using Achiral TBD as Catalyst. Catalysts, 2020, 10, 620.	1.6	15
89	Collision-induced dissociation of polymer ions: Charge driven decomposition for sodium-cationized polylactides and isomeric end-group distinction. International Journal of Mass Spectrometry, 2011, 308, 11-17.	0.7	14
90	Amphiphilic Poly(3-hexylthiophene)-Based Semiconducting Copolymers for Printing of Polyelectrolyte-Gated Organic Field-Effect Transistors. Macromolecules, 2013, 46, 4548-4557.	2.2	14

#	Article	IF	CITATIONS
91	Polyphthalaldehyde-block-polystyrene as a nanochannel template. Journal of Materials Chemistry B, 2014, 2, 3578.	2.9	14
92	Regioregular Polythiophene–Porphyrin Supramolecular Copolymers for Optoelectronic Applications. Macromolecular Chemistry and Physics, 2016, 217, 445-458.	1.1	14
93	Potential of polymethacrylate pseudo crown ethers as solid state polymer electrolytes. Chemical Communications, 2017, 53, 6899-6902.	2.2	14
94	Tough and Three-Dimensional-Printable Poly(2-methoxyethyl acrylate)–Silica Composite Elastomer with Antiplatelet Adhesion Property. ACS Applied Materials & Interfaces, 2020, 12, 46621-46628.	4.0	14
95	New amphiphilic graft copolymer based on poly(2-malic acid): synthesis and characterization. Polymer Bulletin, 2004, 51, 365-372.	1.7	13
96	Cumulated advantages of enzymatic and carbene chemistry for the non-organometallic synthesis of (co)polyesters. Chemical Communications, 2009, , 2472.	2.2	13
97	Meisenheimer Complex Inspired Catalyst- and Solvent-Free Synthesis of Noncyclic Poly(aryl ether) Tj ETQq1 1 0.7	84314 rgE 2.2	3T /Overlock 13
98	Expanding the light absorption of poly(3-hexylthiophene) by end-functionalization with π-extended porphyrins. Chemical Communications, 2016, 52, 171-174.	2.2	13
99	Isotactic degradable polyesters derived from O-carboxyanhydrides of l-lactic and l-malic acid using a single organocatalyst/initiator system. European Polymer Journal, 2017, 95, 660-670.	2.6	13
100	Photoactive Boron–Nitrogen–Carbon Hybrids: From Azo-borazines to Polymeric Materials. Journal of Organic Chemistry, 2019, 84, 9101-9116.	1.7	13
101	Capillary rise of polydimethylsiloxane around a poly(ethylene terephthalate) fiber versus viscosity: Existence of a sharp transition in the dynamic wetting behavior. Journal of Colloid and Interface Science, 2019, 536, 499-506.	5.0	13
102	Synthese cyclischer Polymere durch Ringschlussâ€ S trategien. Angewandte Chemie, 2016, 128, 14150-14164.	1.6	12
103	Tensioactive Properties of Poly([R,S]-β-malic acid-b-ε-caprolactone) Diblock Copolymers in Aqueous Solution. Langmuir, 2003, 19, 8661-8666.	1.6	11
104	Amphiphilic semiconducting copolymer as compatibility layer for printing polyelectrolyte-gated OFETs. Organic Electronics, 2013, 14, 790-796.	1.4	11
105	Macrocyclic P3HT Obtained by Intramolecular McMurry Coupling of Linear Bis-Aldehyde Polymer: A Direct Comparison with Linear Homologue. Macromolecules, 2017, 50, 1939-1949.	2.2	11
106	One Step Further in the Characterization of Synthetic Polymers by Ion Mobility Mass Spectrometry: Evaluating the Contribution of End-groups. Polymers, 2019, 11, 688.	2.0	11
107	Diblock copolymers consisting of a redox polymer block based on a stable radical linked to an electrically conducting polymer block as cathode materials for organic radical batteries. Polymer Chemistry, 2019, 10, 2570-2578.	1.9	11
108	Ring-Opening Polymerization of Cyclic Esters. , 2012, , 761-778.		10

4

#	Article	IF	CITATIONS
109	Metal-Free Catalysis in Ring-Opening Polymerization. , 0, , 357-378.		9
110	Synthesis of amphiphilic A ₃ B miktoâ€arm copolymers from a sugar core: Combination of hydrophobic PCL and hydrophilic glycopolymers for biocompatible nanovector preparation. Journal of Polymer Science Part A, 2010, 48, 3271-3280.	2.5	9
111	Simultaneous "O–Alkyl―and "O–Acyl―Lactone Cleavages from Hydroxy–Carboxylic Acid Initiator Direct Access to Multiblock Architectures. Macromolecules, 2019, 52, 6382-6392.	s: 2.2	9
112	How cyclic chain topology can reduce the crystallization rate of poly(3-hexylthiophene) and promote the formation of liquid crystalline phases in comparison with linear analogue chains. Journal of Materials Chemistry C, 2019, 7, 6548-6558.	2.7	9
113	Accelerating effect of crown ethers on the lactide polymerization catalysed by potassium acetate. Catalysis Science and Technology, 2021, 11, 4387-4391.	2.1	9
114	Assessment of end-group functionality in atom transfer radical polymerization of N-isopropylacrylamide. European Polymer Journal, 2013, 49, 2344-2355.	2.6	8
115	Limitations of ion mobility spectrometryâ€mass spectrometry for the relative quantification of architectural isomeric polymers: A case study. Rapid Communications in Mass Spectrometry, 2020, 34, e8660.	0.7	8
116	Design of naturally inspired jellyfish-shaped cyclopolylactides to manage osteosarcoma cancer stem cells fate. Materials Science and Engineering C, 2020, 117, 111291.	3.8	8
117	Organocatalytic Synthesis of Alkyneâ€Functional Aliphatic Polycarbonates via Ringâ€Opening Polymerization of an Eightâ€Memberedâ€ <i>N</i> â€Cyclic Carbonate. Macromolecular Rapid Communications, 2021, 42, e2000378.	2.0	8
118	Photocontrolled lactide ROP by the light-regulated release of potassium acetate from an azobenzene-bridged crown ether. Catalysis Science and Technology, 2021, 11, 6048-6052.	2.1	8
119	Nanoporous poly(3-hexylthiophene) thin films based on "click―prepared degradable diblock copolymers. RSC Advances, 2016, 6, 33468-33477.	1.7	7
120	Extending the Scope of Benign and Thermally Stable Organocatalysts: Application of Dibenzoylmethane for the Bulk Copolymerization of <scp>l</scp> ‣actide and É>â€Caprolactone. Journal of Polymer Science Part A, 2018, 56, 475-479.	2.5	7
121	Metastable Processes Investigated on an Orthogonal-Axis Time-of-Flight Instrument: Mass-Scale Calibration and Application. European Journal of Mass Spectrometry, 2009, 15, 431-437.	0.5	6
122	Preparation of a mimetic and degradable poly(ethylene glycol) by a non-eutectic mixture of organocatalysts (NEMO) via a one-pot two-step process. RSC Advances, 2019, 9, 40013-40016.	1.7	6
123	Synthesis of brush-like copolymers using carbohydrates as initiators: Benefits of organic catalysts for the ROP of lactones. Reactive and Functional Polymers, 2010, 70, 747-754.	2.0	5
124	Linear polyethylenimine as (multi) functional initiator for organocatalytic l-lactide polymerization. Journal of Materials Chemistry B, 2015, 3, 612-619.	2.9	5
125	Reactive Extrusion and Magnesium (II) N-Heterocyclic Carbene Catalyst in Continuous PLA Production. Polymers, 2019, 11, 1987.	2.0	5

Polymerization of Cycloalkanes. , 0, , 329-356.

#	Article	IF	CITATIONS
127	Bulk Polymerization of (L,L)-Lactide Using Non-Organometallic Triazolium Carbene: Limited Advantages. The Open Macromolecules Journal, 2007, 1, 1-5.	2.0	4
128	New amphiphilic graft copolymer based on poly(?-malic acid): synthesis and characterization. Polymer Bulletin, 2004, 52, 41.	1.7	3
129	Preparation and copolymerization of a functionalized lactone with (DHQD)2AQN. Green Materials, 2013, 1, 203-208.	1.1	3
130	Helical Peptoid Ions in the Gas Phase: Thwarting the Charge Solvation Effect by H-Bond Compensation. Biomacromolecules, 2021, 22, 3543-3551.	2.6	3
131	(<i>E</i>)-3-(2,3,4,5,6-Pentafluorostyryl)thiophene. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o896-o897.	0.2	3
132	Preparation of highly pure cyclo-polylactides by optimization of the copper-catalyzed azide-alkyne cycloaddition reaction. Polimery, 2017, 62, 283-290.	0.4	2
133	On the Conformation of Anionic Peptoids in the Gas Phase. Biomacromolecules, 2022, 23, 1138-1147.	2.6	2
134	Dimerization of Methyl Acrylate through CO ₂ â€pressurized DBU Mediated Process. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
135	Controlled Oxyanionic Polymerization of Propylene Oxide: Unlocking the Molecularâ€Weight Limitation by a Soft Nucleophilic Catalysis. Macromolecular Rapid Communications, 0, , 2200424.	2.0	2
136	Polymerization of Cyclic Depsipeptides, Ureas and Urethanes. , 0, , 123-140.		1
137	Comparison of Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry with Electrospray Ionisation Mass Spectrometry for the characterisation of semitelechelic polyethylene oxide. E-Polymers, 2010, 10, .	1.3	1
138	Optoelectronic Devices: CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrinâ€ĐWCNTs Hybrid Materials (Adv. Funct. Mater. 15/2012). Advanced Functional Materials, 2012, 22, 3315-3315.	7.8	1
139	Assessing the Structural Heterogeneity of Isomeric Homo and Copolymers: an Approach Combining Ion Mobility Mass Spectrometry and Molecular Dynamics Simulations. Journal of the American Society for Mass Spectrometry, 2020, 31, 2379-2388.	1.2	1
140	Synthesis of Poly(Dimethylmalic Acid) Homo- and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells. Polymers, 2020, 12, 1705.	2.0	1
141	Probe Lithography: Probe-Based 3-D Nanolithography Using Self-Amplified Depolymerization Polymers (Adv. Mater. 31/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
142	Special Issue in: Organocatalyzed polymerizations. European Polymer Journal, 2017, 95, 625-627.	2.6	0