Burkhard Hinz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606647/publications.pdf

Version: 2024-02-01

70 papers 3,705 citations

34 h-index 60 g-index

70 all docs

70 docs citations

70 times ranked

3799 citing authors

#	Article	IF	CITATIONS
1	Impact of Cannabinoid Compounds on Skin Cancer. Cancers, 2022, 14, 1769.	3.7	9
2	Cannabinoids as anticancer drugs: current status of preclinical research. British Journal of Cancer, 2022, 127, 1-13.	6.4	49
3	Validation of an LC–MS/MS Method for the Quantification of the CK2 Inhibitor Silmitasertib (CX-4945) in Human Plasma. Molecules, 2022, 27, 2394.	3.8	2
4	A Sensitive LC-MS/MS Method for the Simultaneous Determination of Two Thia-Analogous Indirubin N-Glycosides and Indirubin-3′-Monoxime in Plasma and Cell Culture Medium. Molecules, 2022, 27, 3031.	3.8	2
5	Influence of Test Specimen Geometry and Water Soaking on the In Vitro Cytotoxicity of Orthocryl®, Orthocryl® LC, Loctite® EA 9483 and Polypropylene. Molecules, 2022, 27, 3949.	3.8	o
6	Implementation of a combined CDK inhibition and arginine-deprivation approach to target arginine-auxotrophic glioblastoma multiforme cells. Cell Death and Disease, 2022, 13 , .	6.3	5
7	Correlation of Nabiximols Dose to Steady-State Concentrations of Cannabinoids in Urine Samples from Patients with Multiple Sclerosis. Journal of Clinical Medicine, 2022, 11, 3717.	2.4	1
8	The Combination of Δ9-Tetrahydrocannabinol and Cannabidiol Suppresses Mitochondrial Respiration of Human Glioblastoma Cells via Downregulation of Specific Respiratory Chain Proteins. Cancers, 2022, 14, 3129.	3.7	13
9	Effective tumor cell abrogation via Venetoclax-mediated BCL-2 inhibition in KMT2A-rearranged acute B-lymphoblastic leukemia. Cell Death Discovery, 2022, 8, .	4.7	4
10	The Monoacylglycerol Lipase Inhibitor JZL184 Inhibits Lung Cancer Cell Invasion and Metastasis via the CB1 Cannabinoid Receptor. Molecular Cancer Therapeutics, 2021, 20, 787-802.	4.1	23
11	Small Molecules in the Treatment of Squamous Cell Carcinomas: Focus on Indirubins. Cancers, 2021, 13, 1770.	3.7	15
12	The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers, 2021, 13, 5701.	3.7	23
13	Cannabinoid-Induced Autophagy and Heme Oxygenase-1 Determine the Fate of Adipose Tissue-Derived Mesenchymal Stem Cells under Stressful Conditions. Cells, 2020, 9, 2298.	4.1	7
14	A simple LC-MS/MS method for the simultaneous quantification of endocannabinoids in biological samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1161, 122371.	2.3	15
15	Cannabidiol Promotes Endothelial Cell Survival by Heme Oxygenase-1-Mediated Autophagy. Cells, 2020, 9, 1703.	4.1	26
16	Influence of Casein kinase II inhibitor CX-4945 on BCL6-mediated apoptotic signaling in B-ALL in vitro and in vivo. BMC Cancer, 2020, 20, 184.	2.6	11
17	Antiâ€ŧumour actions of cannabinoids. British Journal of Pharmacology, 2019, 176, 1384-1394.	5.4	105
18	Modulation of the Endocannabinoid System as a Potential Anticancer Strategy. Frontiers in Pharmacology, 2019, 10, 430.	3.5	56

#	Article	IF	CITATIONS
19	Targeting the endocannabinoid system as a potential anticancer approach. Drug Metabolism Reviews, 2018, 50, 26-53.	3.6	37
20	The antiangiogenic action of cisplatin on endothelial cells is mediated through the release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Oncotarget, 2018, 9, 34038-34055.	1.8	25
21	Up-regulation of heme oxygenase-1 expression and inhibition of disease-associated features by cannabidiol in vascular smooth muscle cells. Oncotarget, 2018, 9, 34595-34616.	1.8	28
22	Cannabinoids as Anticancer Drugs. Advances in Pharmacology, 2017, 80, 397-436.	2.0	58
23	Decisive role of P42/44 mitogen-activated protein kinase in î"9-tetrahydrocannabinol-induced migration of human mesenchymal stem cells. Oncotarget, 2017, 8, 105984-105994.	1.8	6
24	Antitumorigenic targets of cannabinoids – current status and implications. Expert Opinion on Therapeutic Targets, 2016, 20, 1219-1235.	3.4	31
25	Differential effects of endogenous, phyto and synthetic cannabinoids on thrombogenesis and platelet activity. BioFactors, 2016, 42, 581-590.	5.4	16
26	Inhibition of interleukin- $\hat{\Pi}^2$ -induced endothelial tissue factor expression by the synthetic cannabinoid WIN 55,212-2. Oncotarget, 2016, 7, 61438-61457.	1.8	4
27	Lovastatin lactone elicits human lung cancer cell apoptosis <i>via</i> a COX-2/PPARγ-dependent pathway. Oncotarget, 2016, 7, 10345-10362.	1.8	44
28	Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells. Oncotarget, 2016, 7, 15047-15064.	1.8	54
29	Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Oncotarget, 2015, 6, 39342-39356.	1.8	20
30	New Insights into Antimetastatic and Antiangiogenic Effects of Cannabinoids. International Review of Cell and Molecular Biology, 2015, 314, 43-116.	3.2	15
31	A simple method for simultaneous determination of N-arachidonoylethanolamine, N-oleoylethanolamine, N-palmitoylethanolamine and 2-arachidonoylglycerol in human cells. Analytical and Bioanalytical Chemistry, 2015, 407, 1781-1787.	3.7	21
32	Inhibition of FAAH confers increased stem cell migration via PPARÎ \pm . Journal of Lipid Research, 2015, 56, 1947-1960.	4.2	12
33	Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK. Biochemical Pharmacology, 2014, 87, 489-501.	4.4	57
34	Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Biochemical Pharmacology, 2014, 91, 202-216.	4.4	52
35	Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochemical Pharmacology, 2014, 92, 312-325.	4.4	79
36	Induction but not inhibition of COX-2 confers human lung cancer cell apoptosis by celecoxib. Journal of Lipid Research, 2013, 54, 3116-3129.	4.2	31

3

#	Article	IF	CITATIONS
37	COX-2 and PPAR-Î ³ Confer Cannabidiol-Induced Apoptosis of Human Lung Cancer Cells. Molecular Cancer Therapeutics, 2013, 12, 69-82.	4.1	169
38	Paracetamol and cyclooxygenase inhibition: is there a cause for concern?. Annals of the Rheumatic Diseases, 2012, 71, 20-25.	0.9	94
39	Cannabidiol inhibits lung cancer cell invasion and metastasis <i>via</i> intercellular adhesion moleculeâ€1. FASEB Journal, 2012, 26, 1535-1548.	0.5	138
40	Paracetamol, ibuprofen, or a combination of both drugs against knee pain: an excellent new randomised clinical trial answers old questions and suggests new therapeutic recommendations. Annals of the Rheumatic Diseases, 2011, 70, 1521-1522.	0.9	11
41	Decrease of Plasminogen Activator Inhibitor-1 May Contribute to the Anti-Invasive Action of Cannabidiol on Human Lung Cancer Cells. Pharmaceutical Research, 2010, 27, 2162-2174.	3.5	74
42	Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochemical Pharmacology, 2010, 79, 955-966.	4.4	150
43	Cyclooxygenase-2 and tissue inhibitor of matrix metalloproteinases-1 confer the antimigratory effect of cannabinoids on human trabecular meshwork cells. Biochemical Pharmacology, 2010, 80, 846-857.	4.4	19
44	Synthesis of Thiaâ€Analogous Indirubin <i>N</i> àâ€Glycosides and their Influence on Melanoma Cell Growth and Apoptosis. ChemMedChem, 2010, 5, 534-539.	3.2	19
45	Using pharmacokinetic principles to optimize pain therapy. Nature Reviews Rheumatology, 2010, 6, 589-598.	8.0	24
46	Antitumorigenic Effects of Cannabinoids beyond Apoptosis. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 336-344.	2.5	67
47	R(+)-Methanandamide-Induced Apoptosis of Human Cervical Carcinoma Cells Involves A Cyclooxygenase-2-Dependent Pathway. Pharmaceutical Research, 2009, 26, 346-355.	3.5	44
48	Aspirin and acetaminophen: Should they be available over the counter?. Current Rheumatology Reports, 2009, 11, 36-40.	4.7	21
49	Inhibition of Cancer Cell Invasion by Cannabinoids via Increased Expression of Tissue Inhibitor of Matrix Metalloproteinases-1. Journal of the National Cancer Institute, 2008, 100, 59-69.	6.3	195
50	Can drug removals involving cyclooxygenase-2 inhibitors be avoided? A plea for human pharmacology. Trends in Pharmacological Sciences, 2008, 29, 391-397.	8.7	23
51	Acetaminophen (paracetamol) is a selective cyclooxygenaseâ€⊋ inhibitor in man. FASEB Journal, 2008, 22, 383-390.	0.5	380
52	Alkamides from Echinacea inhibit cyclooxygenase-2 activity in human neuroglioma cells. Biochemical and Biophysical Research Communications, 2007, 360, 441-446.	2.1	49
53	Drug Insight: cyclo-oxygenase-2 inhibitors—a critical appraisal. Nature Clinical Practice Rheumatology, 2007, 3, 552-560.	3.2	46
54	Dipyrone elicits substantial inhibition of peripheral cyclooxygenases in humans: new insights into the pharmacology of an old analgesic. FASEB Journal, 2007, 21, 2343-2351.	0.5	114

#	Article	IF	CITATIONS
55	R(+)-Methanandamide Elicits a Cyclooxygenase-2-Dependent Mitochondrial Apoptosis Signaling Pathway in Human Neuroglioma Cells. Pharmaceutical Research, 2006, 23, 90-94.	3.5	14
56	Determination of the endocannabinoid anandamide in human plasma by high-performance liquid chromatography. Biomedical Chromatography, 2006, 20, 336-342.	1.7	35
57	A validated high-performance liquid chromatographic assay for determination of lumiracoxib in human plasma. Biomedical Chromatography, 2006, 20, 1033-1037.	1.7	7
58	More pronounced inhibition of cyclooxygenase 2, increase in blood pressure, and reduction of heart rate by treatment with diclofenac compared with celecoxib and rofecoxib. Arthritis and Rheumatism, 2006, 54, 282-291.	6.7	48
59	R(+)-Methanandamide and Other Cannabinoids Induce the Expression of Cyclooxygenase-2 and Matrix Metalloproteinases in Human Nonpigmented Ciliary Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1219-1228.	2.5	40
60	Latanoprost induces matrix metalloproteinaseâ€1 expression in human nonpigmented ciliary epithelial cells through a cyclooxygenaseâ€2â€dependent mechanism. FASEB Journal, 2005, 19, 1929-1931.	0.5	54
61	Prostaglandin E2 induces cyclooxygenase-2 expression in human non-pigmented ciliary epithelial cells through activation of p38 and p42/44 mitogen-activated protein kinases. Biochemical and Biophysical Research Communications, 2005, 338, 1171-1178.	2.1	44
62	Up-Regulation of Cyclooxygenase-2 Expression Is Involved in R(+)-Methanandamide-Induced Apoptotic Death of Human Neuroglioma Cells. Molecular Pharmacology, 2004, 66, 1643-1651.	2.3	88
63	R(+)-methanandamide-induced cyclooxygenase-2 expression in H4 human neuroglioma cells: possible involvement of membrane lipid rafts. Biochemical and Biophysical Research Communications, 2004, 324, 621-626.	2.1	31
64	Celecoxib inhibits metabolism of cytochrome P450 2D6 substrate metoprolol in humans. Clinical Pharmacology and Therapeutics, 2003, 74, 130-137.	4.7	74
65	Aceclofenac spares cyclooxygenase 1 as a result of limited but sustained biotransformation to diclofenac. Clinical Pharmacology and Therapeutics, 2003, 74, 222-235.	4.7	53
66	Ceramide Is Involved in R(+)-Methanandamide-Induced Cyclooxygenase-2 Expression in Human Neuroglioma Cells. Molecular Pharmacology, 2003, 64, 1189-1198.	2.3	57
67	Cyclooxygenase-2—10 Years Later. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 367-375.	2.5	445
68	R(+)-Methanandamide Induces Cyclooxygenase-2 Expression in Human Neuroglioma Cells via a Non-cannabinoid Receptor-Mediated Mechanism. Biochemical and Biophysical Research Communications, 2001, 286, 1144-1152.	2.1	42
69	Antipyretic analgesics. , 2001, , 255-271.		0
70	Cyclooxygenase-2 Expression in Lipopolysaccharide-Stimulated Human Monocytes Is Modulated by Cyclic AMP, Prostaglandin E2, and Nonsteroidal Anti-inflammatory Drugs. Biochemical and Biophysical Research Communications, 2000, 278, 790-796.	2.1	80