Ajit S Divakaruni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606596/publications.pdf

Version: 2024-02-01

45 papers

4,460 citations

29 h-index

172443

243610 44 g-index

48 all docs

48 docs citations

48 times ranked

9461 citing authors

#	Article	IF	CITATIONS
1	Amineâ€weighted chemical exchange saturation transfer magnetic resonance imaging in brain tumors. NMR in Biomedicine, 2023, 36, .	2.8	7
2	Forces, Fluxes, and Fuels: Tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites. American Journal of Physiology - Cell Physiology, 2021, 320, C80-C91.	4.6	10
3	Liver Pyruvate Kinase Promotes NAFLD/NASH in Both Mice and Humans in a Sex-Specific Manner. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 389-406.	4.5	37
4	Adipocytes Provide Fatty Acids to Acute Lymphoblastic Leukemia Cells. Frontiers in Oncology, 2021, 11, 665763.	2.8	29
5	A Single LC-MS/MS Analysis to Quantify CoA Biosynthetic Intermediates and Short-Chain Acyl CoAs. Metabolites, 2021, 11, 468.	2.9	11
6	Measuring CPT-1-mediated respiration in permeabilized cells and isolated mitochondria. STAR Protocols, 2021, 2, 100687.	1,2	8
7	"Aerobic glycolytic imaging―of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging. Neurolmage: Clinical, 2021, 32, 102882.	2.7	8
8	ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. Journal of Biological Chemistry, 2020, 295, 1369-1384.	3.4	23
9	Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Molecular Metabolism, 2020, 32, 122-135.	6.5	83
10	Do Two Mitochondrial Wrongs Help Make Cells Right?. Trends in Molecular Medicine, 2020, 26, 3-6.	6.7	1
11	Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome. Cell Metabolism, 2020, 32, 128-143.e5.	16.2	78
12	Macrophage activation as an archetype of mitochondrial repurposing. Molecular Aspects of Medicine, 2020, 71, 100838.	6.4	18
13	Glioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy. IScience, 2020, 23, 101453.	4.1	47
14	ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. Journal of Biological Chemistry, 2020, 295, 1369-1384.	3.4	18
15	A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO Journal, 2020, 39, e104073.	7.8	110
16	Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Reports, 2020, 21, e49634.	4.5	31
17	Parkin does not prevent accelerated cardiac aging in mitochondrial DNA mutator mice. JCI Insight, 2019, 4, .	5.0	39
18	In situ measurements of mitochondrial matrix enzyme activities using plasma and mitochondrial membrane permeabilization agents. Analytical Biochemistry, 2018, 552, 60-65.	2.4	12

#	Article	IF	CITATIONS
19	Integrated InÂVivo Quantitative Proteomics and Nutrient Tracing Reveals Age-Related Metabolic Rewiring of Pancreatic \hat{l}^2 Cell Function. Cell Reports, 2018, 25, 2904-2918.e8.	6.4	44
20	Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis. Cell Metabolism, 2018, 28, 490-503.e7.	16.2	242
21	Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation. Cell Metabolism, 2018, 28, 504-515.e7.	16.2	264
22	Preserved cardiac function by vinculin enhances glucose oxidation and extends health- and life-span. APL Bioengineering, 2018, 2, .	6.2	5
23	Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. Journal of Cell Biology, 2017, 216, 1091-1105.	5.2	140
24	Impaired mitophagy facilitates mitochondrial damage in Danon disease. Journal of Molecular and Cellular Cardiology, 2017, 108, 86-94.	1.9	57
25	LKB1 promotes metabolic flexibility in response to energy stress. Metabolic Engineering, 2017, 43, 208-217.	7.0	42
26	Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblastâ€like Synoviocytes. Arthritis and Rheumatology, 2016, 68, 1614-1626.	5.6	197
27	Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Scientific Reports, 2016, 6, 22538.	3.3	85
28	Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. Journal of Biological Chemistry, 2016, 291, 14274-14284.	3.4	342
29	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547.	6.4	112
30	Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nature Chemical Biology, 2016, 12, 15-21.	8.0	326
31	HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiology of Disease, 2016, 86, 154-169.	4.4	79
32	Mitochondrial Reprogramming Induced by CaMKIIδ Mediates Hypertrophy Decompensation. Circulation Research, 2015, 116, e28-39.	4.5	47
33	GLP-1 Cleavage Product Reverses Persistent ROS Generation After Transient Hyperglycemia by Disrupting an ROS-Generating Feedback Loop. Diabetes, 2015, 64, 3273-3284.	0.6	72
34	Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A. Journal of Biological Chemistry, 2015, 290, 22274-22286.	3.4	9
35	Cyclic AMP/PKAâ€Mediated Regulation of Mitochondria and Branchedâ€Chain Amino Acid Metabolism in S49 Lymphoma Cells. FASEB Journal, 2015, 29, 896.5.	0.5	0
36	Analysis and Interpretation of Microplate-Based Oxygen Consumption and pH Data. Methods in Enzymology, 2014, 547, 309-354.	1.0	351

3

#	Article	IF	CITATIONS
37	Assessment of Fatty Acid Beta Oxidation in Cells and Isolated Mitochondria. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2014, 60, 25.3.1-19.	1.1	29
38	Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Molecular Metabolism, 2014, 3, 114-123.	6.5	168
39	Regulation of Substrate Utilization by the Mitochondrial Pyruvate Carrier. Molecular Cell, 2014, 56, 425-435.	9.7	243
40	Measuring Mitochondrial Function in Permeabilized Cells Using the Seahorse XF Analyzer or a Clarkâ∈Type Oxygen Electrode. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2014, 60, 25.2.1-16.	1.1	98
41	IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism. Cancer Research, 2014, 74, 3317-3331.	0.9	224
42	Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5422-5427.	7.1	239
43	Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca ²⁺ homeostasis. EMBO Molecular Medicine, 2013, 5, 904-918.	6.9	101
44	A Mitochondrial Mystery, Solved. Science, 2012, 337, 41-43.	12.6	32
45	The Regulation and Physiology of Mitochondrial Proton Leak. Physiology, 2011, 26, 192-205.	3.1	335