Takatsugu Kameda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606491/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Re-examination of the Reynolds-Number-Effect on the Mean Flow Quantities in a Smooth Wall Turbulent Boundary Layer JSME International Journal Series B, 1998, 41, 123-129.	0.3	42
2	Realization of the Turbulent Boundary Layer over the Rough Wall Satisfied the Conditions of Complete Similarity and Its Mean Flow Quantities. Journal of Fluid Science and Technology, 2008, 3, 31-42.	0.6	7
3	Effect of an Adverse Pressure Gradient on the Local Similarity for a Turbulent Boundary Layer. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 771-780.	0.2	3
4	Flow around a Circular Cone in a Thin Boundary Layer (Consideration on a Front Stagnation Point). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2008, 74, 803-810.	0.2	2
5	Flow around a Cone in a Thin Boundary Layer : Flow Characteristics at the Symmetric Plane(Fluids) Tj ETQq1 1 C Engineers Series B B-hen, 2010, 76, 282-290.	0.784314 rg 0.2	gBT /Overlock 2
6	Management of Two-Dimensional Channel Flow with a Pair of Streamwise Vortices (Behavior of) Tj ETQq0 0 0 rg 592-600.	gBT /Overlc 0.6	ock 10 Tf 50 5 1
7	Investigation of the Level of Action on Wall Shear Stress and the Law of the Wall for Rough Wall Turbulent Boundary Layer. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 1821-1828.	0.2	1
8	Flow around a Cone in a Thin Boundary Layer (Variation of the Surface Pressure for an Apex Angle). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 761-770.	0.2	1
9	On the virtual origin determined from momentum equation analysis using experimental data within the roughness sublayer. Experiments in Fluids, 2018, 59, 1.	2.4	1
10	Effect of averaging time windows on wind resource assessment of small wind turbines. Wind Energy, 2022, 25, 1222-1237.	4.2	1
11	Turbulent Boundary Layer Distorted by a Longitudinal Vortex Pair Produced by a Delta-Wing with an Attack Angle (Spanwise Variation of Mean Velocity Field). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2004, 70, 571-578.	0.2	Ο
12	Turbulent Boundary Layer Distorted by a Longitudinal Vortex Pair Produced by a Delta-Wing with an Attack Angle (Reynolds Stress Profiles in a Symmetrical Plane). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2005, 71, 1971-1977.	0.2	0
13	Mechanism of Momentum Exchange near a Roughness Element for Rough Wall Turbulent Boundary Layer (Flow Visualization of Eddy Formed in a Two-Dimensional Square Cavity). Journal of Fluid Science and Technology, 2007, 2, 196-204.	0.6	0
14	Flow Management of a Plane Turbulent Wall Jet by a Streamwise Vortex Pair with Periodic Variation in Strength and Radius. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 1350-1359.	0.2	0
15	Response of the Fully Developed Pipe Flow to Rough Wall Disturbance (Mean Flow Field). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 1360-1372.	0.2	0
16	Effect of roughness on mean flow properties for turbulent boundary layer. Transactions of the JSME (in Japanese), 2016, 82, 16-00306-16-00306.	0.2	0
17	Effect of pulsatile flow to drag of a two-dimensional bluff body. Transactions of the JSME (in) Tj ETQq1 1 0.7843	14 rgBT /0 0:2	Overlock 10 Tf

18 Secondary Flow Effect in an Initial Region of a Rectangular Jet. The Proceedings of Mechanical Engineering Congress Japan, 2017, 2017, S0520201.

0.0 0

#	Article	IF	CITATIONS
19	Effect of apex and attack angles to horseshoe vortex formed around a pyramid obstacle. Transactions of the JSME (in Japanese), 2020, 86, 19-00342-19-00342.	0.2	Ο
20	Comparison of the performance of upwind and downwind wind turbines in wind tunnel experiments. The Proceedings of Mechanical Engineering Congress Japan, 2021, 2021, S051-39.	0.0	0
21	Effect of Roughness Pitch Ratio for a Channel Flow with Roughness Elements on One Wall. The Proceedings of the Fluids Engineering Conference, 2021, 2021, OS02-12.	0.0	Ο