
## Andrey Yu Shishov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606462/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Application of deep eutectic solvents in analytical chemistry. A review. Microchemical Journal, 2017, 135, 33-38.                                                                                                             | 2.3 | 442       |
| 2  | Deep eutectic solvents are not only effective extractants. TrAC - Trends in Analytical Chemistry, 2020, 129, 115956.                                                                                                          | 5.8 | 144       |
| 3  | On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta, 2017, 167, 761-767.                                                  | 2.9 | 79        |
| 4  | In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser:<br>Determination of chromium (VI) in beverages. Talanta, 2020, 206, 120209.                                                     | 2.9 | 77        |
| 5  | An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages. Microchemical Journal, 2019, 144, 469-473.                                      | 2.3 | 72        |
| 6  | In situ decomposition of deep eutectic solvent as a novel approach in liquid-liquid microextraction.<br>Analytica Chimica Acta, 2019, 1065, 49-55.                                                                            | 2.6 | 69        |
| 7  | An effervescence tablet-assisted switchable solvent-based microextraction: On-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination. Journal of Molecular Liquids, 2017, 247, 246-253. | 2.3 | 52        |
| 8  | An effervescence-assisted dispersive liquid–liquid microextraction based on deep eutectic solvent<br>decomposition: Determination of ketoprofen and diclofenac in liver. Microchemical Journal, 2020, 156,<br>104837.         | 2.3 | 50        |
| 9  | Deep eutectic solvents as a new kind of dispersive solvent for dispersive liquid–liquid<br>microextraction. RSC Advances, 2018, 8, 38146-38149.                                                                               | 1.7 | 42        |
| 10 | Deep eutectic mixture membrane-based microextraction: HPLC-FLD determination of phenols in smoked food samples. Food Chemistry, 2020, 314, 126097.                                                                            | 4.2 | 39        |
| 11 | Flow method based on liquid-liquid extraction using deep eutectic solvent for the spectrofluorimetric determination of procainamide in human saliva. Talanta, 2017, 168, 307-312.                                             | 2.9 | 38        |
| 12 | HPLC-MS/MS determination of non-steroidal anti-inflammatory drugs in bovine milk based on<br>simultaneous deep eutectic solvents formation and its solidification. Microchemical Journal, 2019,<br>150, 104080.               | 2.3 | 38        |
| 13 | Decomposition of deep eutectic solvents based on choline chloride and phenol in aqueous phase.<br>Journal of Molecular Liquids, 2020, 301, 112380.                                                                            | 2.3 | 38        |
| 14 | Deep eutectic solvents based on carboxylic acids for metals separation from plant samples: Elemental analysis by ICP-OES. Food Chemistry, 2022, 366, 130634.                                                                  | 4.2 | 33        |
| 15 | Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection. Talanta, 2016, 148, 666-672.                                                                 | 2.9 | 31        |
| 16 | An automated continuous homogeneous microextraction for the determination of selenium and arsenic by hydride generation atomic fluorescence spectrometry. Talanta, 2018, 181, 359-365.                                        | 2.9 | 31        |
| 17 | Microextraction of sulfonamides from milk samples based on hydrophobic deep eutectic solvent formation by pH adjusting. Journal of Molecular Liquids, 2021, 339, 116827.                                                      | 2.3 | 31        |
| 18 | Reversed-phase dispersive liquid-liquid microextraction based on decomposition of deep eutectic solvent for the determination of lead and cadmium in vegetable oil. Food Chemistry, 2022, 373, 131456.                        | 4.2 | 31        |

ANDREY YU SHISHOV

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Automated liquid-liquid microextraction and determination of sulfonamides in urine samples based on Schiff bases formation in natural deep eutectic solvent media. Talanta, 2021, 234, 122660.                                                                | 2.9 | 30        |
| 20 | Deep eutectic solvent-based extraction of metals from oil samples for elemental analysis by ICP-OES.<br>Microchemical Journal, 2022, 179, 107456.                                                                                                             | 2.3 | 27        |
| 21 | Microextraction of sulfonamides from chicken meat samples in three-component deep eutectic solvent. Microchemical Journal, 2020, 158, 105274.                                                                                                                 | 2.3 | 25        |
| 22 | A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry. Talanta, 2018, 183, 290-296.                                                                   | 2.9 | 24        |
| 23 | Behavior of quaternary ammonium salts and terpenoids-based deep eutectic solvents in aqueous phase. Journal of Molecular Liquids, 2022, 347, 117987.                                                                                                          | 2.3 | 23        |
| 24 | Deep Eutectic Solvents or Eutectic Mixtures? Characterization of Tetrabutylammonium Bromide and<br>Nonanoic Acid Mixtures. Journal of Physical Chemistry B, 2022, 126, 3889-3896.                                                                             | 1.2 | 22        |
| 25 | A synergistic effect of hydrophobic deep eutectic solvents based on terpenoids and carboxylic acids for tetracycline microextraction. Analyst, The, 2021, 146, 3449-3453.                                                                                     | 1.7 | 20        |
| 26 | Determination of silicon, phosphorus, iron and aluminum in biodiesel by multicommutated stepwise<br>injection analysis with Ñłassical least squares method. Fuel, 2014, 135, 198-204.                                                                         | 3.4 | 19        |
| 27 | Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel. Analytica Chimica Acta, 2016, 914, 75-80.                                                                                            | 2.6 | 17        |
| 28 | Fully automated spectrophotometric procedure for simultaneous determination of calcium and magnesium in biodiesel. Talanta, 2015, 135, 133-137.                                                                                                               | 2.9 | 16        |
| 29 | Automated IR determination of petroleum products in water based on sequential injection analysis.<br>Talanta, 2016, 148, 661-665.                                                                                                                             | 2.9 | 16        |
| 30 | A rotating disk sorptive extraction based on hydrophilic deep eutectic solvent formation. Analytica<br>Chimica Acta, 2021, 1141, 163-172.                                                                                                                     | 2.6 | 15        |
| 31 | Hydrolysis of triglycerides in milk to provide fatty acids as precursors in the formation of deep eutectic solvent for extraction of polycyclic aromatic hydrocarbons. Talanta, 2022, 237, 122968.                                                            | 2.9 | 14        |
| 32 | A reversed-phase air-assisted dispersive liquid-liquid microextraction coupled with colorimetric<br>paper-based analytical device for the determination of glycerol, calcium and magnesium in biodiesel<br>samples. Microchemical Journal, 2019, 150, 104134. | 2.3 | 13        |
| 33 | Deep eutectic solvent decomposition-based microextraction for chromium determination in aqueous environments by atomic absorption spectrometry with electrothermal atomization. Analyst, The, 2021, 146, 5081-5088.                                           | 1.7 | 12        |
| 34 | High rate laser deposition of conductive copper microstructures from deep eutectic solvents.<br>Chemical Communications, 2019, 55, 9626-9628.                                                                                                                 | 2.2 | 11        |
| 35 | Fluoroquinolones extraction from meat samples based on deep eutectic solvent formation. Journal of Food Composition and Analysis, 2020, 93, 103589.                                                                                                           | 1.9 | 11        |
| 36 | Microstructured optical fibers sensor modified by deep eutectic solvent: Liquid-phase microextraction and detection in one analytical device. Talanta, 2021, 232, 122305.                                                                                     | 2.9 | 9         |

ANDREY YU SHISHOV

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A new hydrophobic deep eutectic solvent based on thymol and 4-(dimethylamino)benzaldehyde:<br>Derivatization and microextraction of urea. Journal of Molecular Liquids, 2022, 353, 118820.                                        | 2.3 | 9         |
| 38 | Automated solid sample dissolution coupled with sugaring-out homogenous liquid-liquid extraction.<br>Application for the analysis of throat lozenge samples. Journal of Molecular Liquids, 2017, 233, 149-155.                    | 2.3 | 8         |
| 39 | Laser-induced deposition of copper from deep eutectic solvents: optimization of chemical and physical parameters. New Journal of Chemistry, 2021, 45, 21896-21904.                                                                | 1.4 | 7         |
| 40 | Simultaneous cyclic-injection spectrophotometric determination of aluminum and iron in petroleum products. Journal of Analytical Chemistry, 2014, 69, 1159-1164.                                                                  | 0.4 | 6         |
| 41 | Flow-based methods and their applications in chemical analysis. ChemTexts, 2021, 7, 1.                                                                                                                                            | 1.0 | 6         |
| 42 | Direct Laser Writing of Copper Micropatterns from Deep Eutectic Solvents Using Pulsed near-IR<br>Radiation. Nanomaterials, 2022, 12, 1127.                                                                                        | 1.9 | 5         |
| 43 | Reversed-phase chromatomembrane extraction as a novel approach for automated sample pretreatment: Anions determination in biodiesel by ion chromatography with conductivity detection. Analytica Chimica Acta, 2019, 1087, 62-68. | 2.6 | 3         |
| 44 | Fast flow-based method for automated and miniaturized determination of ferrocene in gasoline.<br>Microchemical Journal, 2017, 130, 185-190.                                                                                       | 2.3 | 2         |
| 45 | Fast and energy-effective deep eutectic solvent-based microextraction approach for the ICP-OES determination of catalysts in biodiesel. Chemical Thermodynamics and Thermal Analysis, 2022, 7, 100071.                            | 0.7 | 2         |
| 46 | Stepwise injection photometric determination of phosphorus in light oil products. Journal of<br>Analytical Chemistry, 2011, 66, 946-950.                                                                                          | 0.4 | 0         |
| 47 | Cyclic injection photometric determination of silicon in oil products. Journal of Analytical<br>Chemistry, 2013, 68, 148-151.                                                                                                     | 0.4 | Ο         |