Richard Jack Anton van Wezel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360646/publications.pdf

Version: 2024-02-01

125 papers 4,233 citations

30 h-index 59 g-index

129 all docs

129 docs citations

times ranked

129

4591 citing authors

#	Article	IF	Citations
1	Orthostatic Blood Pressure Recovery Measured Using a Sphygmomanometer Is Not Associated with Physical Performance or Number of Falls in Geriatric Outpatients. Gerontology, 2022, 68, 75-79.	2.8	2
2	Real-world indoor mobility with simulated prosthetic vision: The benefits and feasibility of contour-based scene simplification at different phosphene resolutions. Journal of Vision, 2022, 22, 1.	0.3	26
3	Determinants of orthostatic cerebral oxygenation assessed using near-infrared spectroscopy. Autonomic Neuroscience: Basic and Clinical, 2022, 238, 102942.	2.8	7
4	End-to-end optimization of prosthetic vision. Journal of Vision, 2022, 22, 20.	0.3	19
5	Cerebral autoregulation assessed by near-infrared spectroscopy: validation using transcranial Doppler in patients with controlled hypertension, cognitive impairment and controls. European Journal of Applied Physiology, 2021, 121, 2165-2176.	2.5	9
6	Consolidation of memory traces in cultured cortical networks requires low cholinergic tone, synchronized activity and high network excitability. Journal of Neural Engineering, 2021, 18, 046051.	3.5	10
7	Orthostatic blood pressure recovery associates with physical performance, frailty and number of falls in geriatric outpatients. Journal of Hypertension, 2021, 39, 101-106.	0.5	9
8	Dynamics of a Mutual Inhibition Circuit between Pyramidal Neurons Compared to Human Perceptual Competition. Journal of Neuroscience, 2021, 41, 1251-1264.	3.6	4
9	A Oneâ€Step Biofunctionalization Strategy of Electrospun Scaffolds Enables Spatially Selective Presentation of Biological Cues. Advanced Materials Technologies, 2020, 5, 2000269.	5.8	3
10	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	3.9	26
11	Freezing of gait detection in Parkinson's disease via multimodal analysis of EEG and accelerometer signals. , 2020, 2020, 847-850.		11
12	Perceptual Coupling Based on Depth and Motion Cues in Stereovision-Impaired Subjects. Perception, 2020, 49, 1101-1114.	1.2	0
13	Multimodal Monitoring of Cardiovascular Responses to Postural Changes. Frontiers in Physiology, 2020, 11, 168.	2.8	11
14	Blood Pressure Drop Rate After Standing Up Is Associated With Frailty and Number of Falls in Geriatric Outpatients. Journal of the American Heart Association, 2020, 9, e014688.	3.7	18
15	Virtual reality distraction for patients to relieve pain and discomfort during colonoscopy. Endoscopy International Open, 2020, 08, E959-E966.	1.8	14
16	Opto-locomotor reflexes of mice to reverse-phi stimuli. Journal of Vision, 2020, 20, 7.	0.3	4
17	Tandem electrospinning for heterogeneous nanofiber patterns. Biofabrication, 2020, 12, 025010.	7.1	6
18	The Effects of Augmented Reality Visual Cues on Turning in Place in Parkinson's Disease Patients With Freezing of Gait. Frontiers in Neurology, 2020, 11, 185.	2.4	27

#	Article	IF	CITATIONS
19	The Beneficial Effects of Conventional Visual Cues Are Retained When Augmented Reality Glasses Are Worn. Parkinson's Disease, 2020, 2020, 1-3.	1.1	4
20	Pulse transit time as a proxy for vasoconstriction in younger and older adults. Experimental Gerontology, 2020, 135, 110938.	2.8	12
21	Single-Cell Recordings to Target the Anterior Nucleus of the Thalamus in Deep Brain Stimulation for Patients with Refractory Epilepsy. International Journal of Neural Systems, 2019, 29, 1850012.	5.2	19
22	Validation of the Auditory Stroop Task to increase cognitive load in walking tasks in healthy elderly and persons with Parkinson's disease. PLoS ONE, 2019, 14, e0220735.	2.5	18
23	Ultraviolet Functionalization of Electrospun Scaffolds to Activate Fibrous Runways for Targeting Cell Adhesion. Frontiers in Bioengineering and Biotechnology, 2019, 7, 159.	4.1	7
24	Sensitivity and reliability of cerebral oxygenation responses to postural changes measured with near-infrared spectroscopy. European Journal of Applied Physiology, 2019, 119, 1117-1125.	2.5	25
25	Age-dependency in binocular rivalry is reflected by exclusive percepts, not mixed percepts. Scientific Reports, 2019, 9, 19271.	3.3	8
26	Orthostatic Hypotension and Falls in Older Adults: A Systematic Review and Meta-analysis. Journal of the American Medical Directors Association, 2019, 20, 589-597.e5.	2.5	101
27	Emotion Recognition with Simulated Phosphene Vision. , 2019, , .		3
28	Opportunities and Pitfalls in Applying Emotion Recognition Software for Persons With a Visual Impairment: Simulated Real Life Conversations. JMIR MHealth and UHealth, 2019, 7, e13722.	3.7	1
29	Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Advanced Healthcare Materials, 2018, 7, e1701164.	7.6	94
30	The laser shoes. Neurology, 2018, 90, e164-e171.	1.1	77
31	Nerve Repair: Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies (Adv. Healthcare Mater. 8/2018). Advanced Healthcare Materials, 2018, 7, 1870035.	7.6	6
32	Rapid Systolic Blood Pressure Changes After Standing Up Associate With Impaired Physical Performance in Geriatric Outpatients. Journal of the American Heart Association, 2018, 7, e010060.	3.7	24
33	Visual cueing using laser shoes reduces freezing of gait in Parkinson's patients at home. Movement Disorders, 2018, 33, 1664-1665.	3.9	6
34	Orthostatic hypotension and physical functioning in older adults: A systematic review and meta-analysis. Ageing Research Reviews, 2018, 48, 122-144.	10.9	37
35	Changes in low-level neural properties underlie age-dependent visual decision making. Scientific Reports, 2018, 8, 10789.	3.3	7
36	Provoking Freezing of Gait in Clinical Practice: Turning in Place is More Effective than Stepping in Place. Journal of Parkinson's Disease, 2018, 8, 363-365.	2.8	16

#	Article	IF	Citations
37	Conveying facial expressions to blind and visually impaired persons through a wearable vibrotactile device. PLoS ONE, 2018, 13, e0194737.	2.5	31
38	Exogenous \hat{l}_{\pm} -synuclein hinders synaptic communication in cultured cortical primary rat neurons. PLoS ONE, 2018, 13, e0193763.	2.5	24
39	Levelt's propositions examined at the level of mutually inhibiting pyramidal cells in primary visual cortex. Journal of Vision, 2018, 18, 537.	0.3	O
40	Response to: staircase climbing is not solely a visual compensation strategy to alleviate freezing of gait in Parkinson's disease. Journal of Neurology, 2017, 264, 177-178.	3.6	2
41	Response to: On the role of visual electrophysiology in parkinson's disease. Parkinsonism and Related Disorders, 2017, 45, 98.	2.2	O
42	Sparse pallidal connections shape synchrony in a network model of the basal ganglia. European Journal of Neuroscience, 2017, 45, 1000-1012.	2.6	10
43	Changes in fMRI BOLD dynamics reflect anticipation to moving objects. Neurolmage, 2017, 161, 188-195.	4.2	3
44	Photoacoustic staging of nodal metastases using SPIOs: Comparison between in vivo, inÂtoto and ex vivo imaging in a rat model. Biomedical Spectroscopy and Imaging, 2017, 5, 71-87.	1.2	1
45	Exploring Braak's Hypothesis of Parkinson's Disease. Frontiers in Neurology, 2017, 8, 37.	2.4	210
46	Usability of Three-dimensional Augmented Visual Cues Delivered by Smart Glasses on (Freezing of) Gait in Parkinson's Disease. Frontiers in Neurology, 2017, 8, 279.	2.4	61
47	Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease. Journal of Neurology, 2016, 263, 1156-1165.	3.6	67
48	Predictive coding for motion stimuli in human early visual cortex. Brain Structure and Function, 2016, 221, 879-890.	2.3	29
49	Best practice for passaging murine embryonic enteric neuronal cell line before differentiation. Cytotechnology, 2016, 68, 2379-2388.	1.6	O
50	Enhancing Emotion Recognition in VIPs with Haptic Feedback. Communications in Computer and Information Science, 2016, , 157-163.	0.5	11
51	Neuronal toll-like receptors and neuro-immunity in Parkinson's disease, Alzheimer's disease and stroke. Neuroimmunology and Neuroinflammation, 2016, 3, 27.	1.4	51
52	Visual cues from augmented reality glasses to improve gait of Parkinson's disease patients. Journal of Vision, 2016, 16, 770.	0.3	0
53	E-health Support in People with Parkinson's Disease with Smart Glasses: A Survey of User Requirements and Expectations in the Netherlands. Journal of Parkinson's Disease, 2015, 5, 369-378.	2.8	31
54	Magnetic drug delivery with FePd nanowires. Journal of Magnetism and Magnetic Materials, 2015, 380, 299-306.	2.3	57

#	Article	IF	CITATIONS
55	Pallidal gap junctionsâ€triggers of synchrony in Parkinson's disease?. Movement Disorders, 2014, 29, 1486-1494.	3.9	19
56	Synchronization of the parkinsonian globus pallidus by gap junctions. BMC Neuroscience, 2014, 15, .	1.9	1
57	Patterns of resting state connectivity in human primary visual cortical areas: A 7T fMRI study. Neurolmage, 2014, 84, 911-921.	4.2	55
58	Neural mechanisms of speed perception: transparent motion. Journal of Neurophysiology, 2013, 110, 2007-2018.	1.8	21
59	Photoacoustic intra-operative nodal staging using clinically approved superparamagnetic iron oxide nanoparticles. Proceedings of SPIE, 2013, , .	0.8	O
60	<i>In vivo</i> testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves. Journal of Neural Engineering, 2013, 10, 066018.	3.5	16
61	Intraâ€operative <i>ex vivo</i> photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion. Journal of Biophotonics, 2013, 6, 493-504.	2.3	22
62	Integration of Motion Responses Underlying Directional Motion Anisotropy in Human Early Visual Cortical Areas. PLoS ONE, 2013, 8, e67468.	2.5	13
63	Speed and direction response profiles of neurons in macaque MT and MST show modest constraint line tuning. Frontiers in Behavioral Neuroscience, 2013, 7, 22.	2.0	13
64	Synchrony in Parkinson's disease: importance of intrinsic properties of the external globus pallidus. Frontiers in Systems Neuroscience, 2013, 7, 60.	2.5	30
65	The future of binocular rivalry research. Advances in Consciousness Research, 2013, , 305-332.	0.2	9
66	United we sense, divided we fail: context-driven perception of ambiguous visual stimuli. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 932-941.	4.0	37
67	The effect of stimulus features on working memory of categorical and coordinate spatial relations in patients with unilateral brain damage. Cortex, 2012, 48, 737-745.	2.4	12
68	Retinotopic Mapping of Categorical and Coordinate Spatial Relation Processing in Early Visual Cortex. PLoS ONE, 2012, 7, e38644.	2.5	7
69	Divisive Normalization and Neuronal Oscillations in a Single Hierarchical Framework of Selective Visual Attention. Frontiers in Neural Circuits, 2012, 6, 22.	2.8	16
70	Intermittent stimulus presentation stabilizes neuronal responses in macaque area MT. Journal of Neurophysiology, 2012, 108, 2101-2114.	1.8	6
71	Dynamics of temporally interleaved percept-choice sequences: interaction via adaptation in shared neural populations. Journal of Computational Neuroscience, 2012, 32, 177-195.	1.0	8
72	A review of lateralization of spatial functioning in nonhuman primates. Brain Research Reviews, 2011, 67, 56-72.	9.0	25

#	Article	IF	CITATIONS
73	Effects of Vision Restoration Training on Early Visual Cortex in Patients With Cerebral Blindness Investigated With Functional Magnetic Resonance Imaging. Journal of Neurophysiology, 2011, 105, 872-882.	1.8	31
74	Crossmodal duration perception involves perceptual grouping, temporal ventriloquism, and variable internal clock rates. Attention, Perception, and Psychophysics, 2011, 73, 219-236.	1.3	40
75	Implied Motion Activation in Cortical Area MT Can Be Explained by Visual Low-level Features. Journal of Cognitive Neuroscience, 2011, 23, 1533-1548.	2.3	18
76	Spatial summation in macaque parietal area 7a follows a winner-take-all rule. Journal of Neurophysiology, 2011, 105, 1150-1158.	1.8	20
77	Experience-Driven Plasticity in Binocular Vision. Current Biology, 2010, 20, 1464-1469.	3.9	87
78	Distance Estimation Is Influenced by Encoding Conditions. PLoS ONE, 2010, 5, e9918.	2.5	0
79	Temporal integration of focus position signal during compensation for pursuit in optic flow. Journal of Vision, 2010, 10, 14-14.	0.3	3
80	Temporal characteristics of working memory for spatial relations: An ERP study. International Journal of Psychophysiology, 2010, 77, 83-94.	1.0	11
81	Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling. Journal of Vision, 2009, 9, 20-20.	0.3	20
82	Widespread fMRI activity differences between perceptual states in visual rivalry are correlated with differences in observer biases. Brain Research, 2009, 1252, 161-171.	2.2	21
83	Categorical and coordinate spatial relations in working memory: An fMRI study. Brain Research, 2009, 1297, 70-79.	2.2	39
84	Directional anisotropy of motion responses in retinotopic cortex. Human Brain Mapping, 2009, 30, 3970-3980.	3.6	26
85	Temporal dynamics of decisions on spatial categories and distances do not differ. Brain and Cognition, 2009, 69, 209-217.	1.8	1
86	Disentangling neural structures for processing of high―and lowâ€speed visual motion. European Journal of Neuroscience, 2008, 27, 2341-2353.	2.6	16
87	Linking form and motion in the primate brain. Trends in Cognitive Sciences, 2008, 12, 230-236.	7.8	89
88	Early interactions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. Journal of Vision, 2008, 8, 16.	0.3	83
89	The role of motion capture in an illusory transformation of optic flow fields. Journal of Vision, 2008, 8, 27.	0.3	5
90	General Validity of Levelt's Propositions Reveals Common Computational Mechanisms for Visual Rivalry. PLoS ONE, 2008, 3, e3473.	2.5	55

#	Article	IF	Citations
91	Adaptation to Real Motion Reveals Direction-selective Interactions between Real and Implied Motion Processing. Journal of Cognitive Neuroscience, 2007, 19, 1231-1240.	2.3	24
92	Test–retest reliability of fMRI activation during prosaccades and antisaccades. NeuroImage, 2007, 36, 532-542.	4.2	119
93	Percept-choice sequences driven by interrupted ambiguous stimuli: A low-level neural model. Journal of Vision, 2007, 7, 10.	0.3	187
94	Inter-ocular transfer of stimulus cueing in dominance selection at the onset of binocular rivalry. Vision Research, 2007, 47, 1142-1144.	1.4	12
95	The time course of hemispheric differences in categorical and coordinate spatial processing. Neuropsychologia, 2007, 45, 2492-2498.	1.6	30
96	Adaptation: from single cells to BOLD signals. Trends in Neurosciences, 2006, 29, 250-256.	8.6	475
97	The influence of biological motion perception on structure-from-motion interpretations at different speeds. Journal of Vision, 2006, 6, 4.	0.3	17
98	Adaptation in Macaque MT Reduces Perceived Speed and Improves Speed Discrimination. Journal of Neurophysiology, 2006, 95, 255-270.	1.8	148
99	An illusory transformation of optic flow fields without local motion interactions. Vision Research, 2006, 46, 439-443.	1.4	8
100	Delayed Response to Animate Implied Motion in Human Motion Processing Areas. Journal of Cognitive Neuroscience, 2006, 18, 158-168.	2.3	54
101	Interactions between Speed and Contrast Tuning in the Middle Temporal Area: Implications for the Neural Code for Speed. Journal of Neuroscience, 2006, 26, 8988-8998.	3.6	92
102	Delayed Response to Animate Implied Motion in Human Motion Processing Areas. Journal of Cognitive Neuroscience, 2006, 18, 158-168.	2.3	28
103	Dynamics of directional selectivity in MT receptive field centre and surround. European Journal of Neuroscience, 2005, 22, 2049-2058.	2.6	20
104	Temporal Dynamics of Direction Tuning in Motion-Sensitive Macaque Area MT. Journal of Neurophysiology, 2005, 93, 2104-2116.	1.8	36
105	Inhibition of return is not a foraging facilitator in saccadic search and free viewing. Vision Research, 2005, 45, 1901-1908.	1.4	92
106	Motion Processing: How Low Can You Go?. Current Biology, 2003, 13, R840-R842.	3.9	3
107	The motion reverse correlation (MRC) method:. Journal of Neuroscience Methods, 2003, 123, 153-166.	2.5	40
108	Velocity Dependence of the Interocular Transfer of Dynamic Motion Aftereffects. Perception, 2003, 32, 855-866.	1.2	13

#	Article	IF	CITATIONS
109	Area MST and Heading Perception in Macaque Monkeys. Cerebral Cortex, 2002, 12, 692-701.	2.9	109
110	Motion Adaptation in Area MT. Journal of Neurophysiology, 2002, 88, 3469-3476.	1.8	108
111	Multiple uses of visual motion. The case for stability in sensory cortex. Neuroscience, 2002, 111, 739-759.	2.3	19
112	Systematic eye movements do not account for the perception of motion during attentive tracking. Vision Research, 2001, 41, 3505-3511.	1.4	14
113	Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nature Neuroscience, 1998, 1, 59-63.	14.8	259
114	Spatial asymmetries in cat retinal ganglion cell responses. Biological Cybernetics, 1998, 79, 151-159.	1.3	3
115	Responses of Complex Cells in Cat Area 17 to Apparent Motion of Random Pixel Arrays. Vision Research, 1997, 37, 839-852.	1.4	8
116	Recovery from adaptation for dynamic and static motion aftereffects: Evidence for two mechanisms. Vision Research, 1996, 36, 421-424.	1.4	37
117	Directional Motion Sensitivity under Transparent Motion Conditions. Vision Research, 1996, 36, 2333-2336.	1.4	23
118	Responses of Complex Cells in Area 17 of the Cat to Bi-vectorial Transparent Motion. Vision Research, 1996, 36, 2805-2813.	1.4	24
119	Spatial and temporal properties of cat horizontal cells after prolonged dark adaptation. Vision Research, 1996, 36, 3955-3967.	1.4	12
120	Gain control and hyperpolarization level in cat horizontal cells as a function of light and dark adaptation. Vision Research, 1996, 36, 3969-3985.	1.4	8
121	Horizontal cell sensitivity in the cat retina during prolonged dark adaptation. Visual Neuroscience, 1996, 13, 885-896.	1.0	6
122	Spatial Integration in Coherent Motion Detection and in the Movement Aftereffect. Perception, 1994, 23, 1189-1195.	1,2	2
123	The dynamics of light adaptation in cat horizontal cell responses. Vision Research, 1993, 33, 1153-1171.	1.4	24
124	Light adaptation and frequency transfer properties of cat horizontal cells. Vision Research, 1991, 31, 1129-1142.	1.4	22
125	Effects of background illumination on cat horizontal cell responses. Vision Research, 1991, 31, 919-932.	1.4	22