Jotaro Nakazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region. Journal of Physical Chemistry Letters, 2013, 4, 2455-2460.	4.6	136
2	Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry Letters, 2015, 44, 674-676.	1.3	105
3	Origin of the Hysteresis in <i>I</i> – <i>V</i> Curves for Planar Structure Perovskite Solar Cells Rationalized with a Surface Boundary-induced Capacitance Model. Chemistry Letters, 2015, 44, 1750-1752.	1.3	102
4	Temperature Effects on the Photovoltaic Performance of Planar Structure Perovskite Solar Cells. Chemistry Letters, 2015, 44, 1557-1559.	1.3	83
5	Enhanced Carrier Transport Distance in Colloidal PbS Quantum-Dot-Based Solar Cells Using ZnO Nanowires. Journal of Physical Chemistry C, 2015, 119, 27265-27274.	3.1	65
6	Solution-Processed Short-Wave Infrared PbS Colloidal Quantum Dot/ZnO Nanowire Solar Cells Giving High Open-Circuit Voltage. ACS Energy Letters, 2017, 2, 2110-2117.	17.4	55
7	Determination of unique power conversion efficiency of solar cell showing hysteresis in the I-V curve under various light intensities. Scientific Reports, 2017, 7, 11790.	3.3	38
8	Lead-Free Perovskite Solar Cells with Over 10% Efficiency and Size 1 cm ² Enabled by Solvent–Crystallization Regulation in a Two-Step Deposition Method. ACS Energy Letters, 2022, 7, 425-431.	17.4	36
9	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	11.6	32
10	Reduction of Nonradiative Loss in Inverted Perovskite Solar Cells by Donorâ~ï€â€"Acceptor Dipoles. ACS Applied Materials & Interfaces, 2021, 13, 44321-44328.	8.0	30
11	Photosensitized Protein-Damaging Activity, Cytotoxicity, and Antitumor Effects of P(V)porphyrins Using Long-Wavelength Visible Light through Electron Transfer. Chemical Research in Toxicology, 2018, 31, 371-379.	3.3	28
12	PbS colloidal quantum dot/ZnOâ€based bulkâ€heterojunction solar cells with high stability under continuous light soaking. Physica Status Solidi - Rapid Research Letters, 2014, 8, 961-965.	2.4	26
13	Effect of TiO ₂ Surface Treatment on the Current–Voltage Hysteresis of Planarâ€6tructure Perovskite Solar Cells Prepared on Rough and Flat Fluorineâ€Doped Tin Oxide Substrates. Energy Technology, 2017, 5, 1762-1766.	3.8	26
14	Investigation of plasmonic gold–silica core–shell nanoparticle stability in dye-sensitized solar cell applications. Journal of Colloid and Interface Science, 2014, 427, 54-61.	9.4	24
15	Highly Stable Interdigitated PbS Quantum Dot and ZnO Nanowire Solar Cells with an Automatically Embedded Electron-Blocking Layer. ACS Applied Energy Materials, 2021, 4, 5918-5926.	5.1	23
16	Controlled Photodynamic Action of Axial Fluorinated DiethoxyP(V)tetrakis(<i>p</i> -methoxyphenyl)porphyrin through Self-Aggregation. Chemical Research in Toxicology, 2019, 32, 1638-1645.	3.3	11
17	Spectral Splitting Solar Cells Constructed with InGaP/GaAs Two-Junction Subcells and Infrared PbS Quantum Dot/ZnO Nanowire Subcells. ACS Energy Letters, 2022, 7, 2477-2485.	17.4	7
18	Photosensitized Protein Damage by DiethyleneglycoxyP(V)tetrakis(<i>pâ€n</i> â€butoxyphenyl)porphyrin Through Electron Transfer: Activity Control Through Selfâ€aggregation and Dissociation. Photochemistry and Photobiology, 2022, 98, 434-441.	2.5	3

#	Article	IF	CITATIONS
19	Basic Principle of Photoinduced Charge Separation for TiO2–TCNQ Surface Complex Revealed by a Multibody Model. Journal of Physical Chemistry C, 2020, 124, 13535-13540.	3.1	1