James F Collawn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma Exosome Hemoglobin Released During Surgery Is Associated With CardiacÂInjury in Animal Model. Annals of Thoracic Surgery, 2023, 116, 834-843.	1.3	5
2	Red blood cell exosome hemoglobin content increases after cardiopulmonary bypass and mediates acute kidney injury in an animal model. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, e289-e308.	0.8	12
3	Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia EXCLI Journal, 2022, 21, 454-469.	0.7	9
4	Triazoloacridone C-1305 impairs XBP1 splicing by acting as a potential IRE1α endoribonuclease inhibitor. Cellular and Molecular Biology Letters, 2021, 26, 11.	7.0	9
5	Genome-wide mRNA profiling identifies X-box-binding protein 1 (XBP1) as an IRE1 and PUMA repressor. Cellular and Molecular Life Sciences, 2021, 78, 7061-7080.	5.4	24
6	Genomeâ€wide mRNA profiling identifies <i>RCAN1</i> and <i>GADD45A</i> as regulators of the transitional switch from survival to apoptosis during ER stress. FEBS Journal, 2020, 287, 2923-2947.	4.7	27
7	SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L444-L455.	2.9	60
8	The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers, 2020, 12, 3119.	3.7	6
9	IRE1 Endoribonuclease Activity Modulates Hypoxic HIF-1α Signaling in Human Endothelial Cells. Biomolecules, 2020, 10, 895.	4.0	21
10	Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cellular and Molecular Biology Letters, 2020, 25, 18.	7.0	82
11	Reduced Left Atrial Emptying Fraction and Chymase Activation in Pathophysiology of Primary MitralÂRegurgitation. JACC Basic To Translational Science, 2020, 5, 109-122.	4.1	10
12	Utilizing Genome-Wide mRNA Profiling to Identify the Cytotoxic Chemotherapeutic Mechanism of Triazoloacridone C-1305 as Direct Microtubule Stabilization. Cancers, 2020, 12, 864.	3.7	5
13	<i>miRâ€34câ€5p</i> modulates Xâ€box–binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response. FASEB Journal, 2019, 33, 11541-11554.	e 0.5	32
14	Plasma xanthine oxidase activity is related to increased sodium and left ventricular hypertrophy in resistant hypertension. Free Radical Biology and Medicine, 2019, 134, 343-349.	2.9	14
15	Chymase uptake by cardiomyocytes results in myosin degradation in cardiac volume overload. Heliyon, 2019, 5, e01397.	3.2	12
16	Primary endothelial cell–specific regulation of hypoxiaâ€inducible factor (HIF)â€1 and HIFâ€2 and their target gene expression profiles during hypoxia. FASEB Journal, 2019, 33, 7929-7941.	0.5	125
17	miRNA networks modulate human endothelial cell adaptation to cyclic hypoxia. Cellular Signalling, 2019, 54, 150-160.	3.6	28
18	miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis, 2018, 21, 183-202.	7.2	192

JAMES F COLLAWN

#	Article	IF	CITATIONS
19	Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circulation Research, 2018, 122, 319-336.	4.5	81
20	microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene, 2018, 640, 66-72.	2.2	71
21	PIWI proteins contribute to apoptosis during the UPR in human airway epithelial cells. Scientific Reports, 2018, 8, 16431.	3.3	23
22	Therapeutic Attenuation of the Epithelial Sodium Channel with a SPLUNC1-derived peptide in Airway Diseases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L239-L242.	2.9	0
23	eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis, 2018, 21, 711-724.	7.2	50
24	SNPs in microRNA target sites and their potential role in human disease. Open Biology, 2017, 7, 170019.	3.6	157
25	Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H32-H45.	3.2	33
26	Ion channels of the lung and their role in disease pathogenesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L859-L872.	2.9	68
27	miR-200b downregulates Kruppel Like Factor 2 (KLF2) during acute hypoxia in human endothelial cells. European Journal of Cell Biology, 2017, 96, 758-766.	3.6	40
28	The therapeutic potential of CFTR modulators for COPD and other airway diseases. Current Opinion in Pharmacology, 2017, 34, 132-139.	3.5	41
29	miR-200b downregulates CFTR during hypoxia in human lung epithelial cells. Cellular and Molecular Biology Letters, 2017, 22, 23.	7.0	54
30	Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. Cellular and Molecular Biology Letters, 2016, 21, 23.	7.0	32
31	Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochemical and Biophysical Research Communications, 2016, 478, 559-564.	2.1	41
32	miR-429 regulates the transition between Hypoxia-Inducible Factor (HIF)1A and HIF3A expression in human endothelial cells. Scientific Reports, 2016, 6, 22775.	3.3	55
33	Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload. Journal of Molecular and Cellular Cardiology, 2016, 92, 1-9.	1.9	29
34	Role of epithelial sodium channels in the regulation of lung fluid homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1229-L1238.	2.9	108
35	î"F508 CFTR Surface Stability Is Regulated by DAB2 and CHIP-Mediated Ubiquitination in Post-Endocytic Compartments. PLoS ONE, 2015, 10, e0123131.	2.5	29
36	Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H651-H663.	3.2	66

JAMES F COLLAWN

#	Article	IF	CITATIONS
37	Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 2015, 89, 241-250.	1.9	14
38	RNAdigest: A Web-Based Tool for the Analysis and Prediction of Structure - Specific RNAse Digestion Results. PLoS ONE, 2014, 9, e96759.	2.5	4
39	CFTR and lung homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L917-L923.	2.9	73
40	Whole-genome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Therapeutic Advances in Cardiovascular Disease, 2014, 8, 97-118.	2.1	9
41	Rescuing ΔF508 CFTR with trimethylangelicin, a dual-acting corrector and potentiator. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L431-L434.	2.9	7
42	Chymase Mediates Injury and Mitochondrial Damage in Cardiomyocytes during Acute Ischemia/Reperfusion in the Dog. PLoS ONE, 2014, 9, e94732.	2.5	39
43	The CFTR and ENaC debate: how important is ENaC in CF lung disease?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1141-L1146.	2.9	68
44	A Synonymous Single Nucleotide Polymorphism in ΔF508 CFTR Alters the Secondary Structure of the mRNA and the Expression of the Mutant Protein. Journal of Biological Chemistry, 2010, 285, 28741-28748.	3.4	178