List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606192/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 2018, 361, 186-188.                                                                                                                                               | 12.6 | 519       |
| 2  | Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6722-6727.                                              | 7.1  | 250       |
| 3  | Global carbon intensity of crude oil production. Science, 2018, 361, 851-853.                                                                                                                                                                      | 12.6 | 196       |
| 4  | Methane Leaks from Natural Gas Systems Follow Extreme Distributions. Environmental Science &<br>Technology, 2016, 50, 12512-12520.                                                                                                                 | 10.0 | 195       |
| 5  | The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy and Environmental Science, 2013, 6, 2804.                                                                                                    | 30.8 | 143       |
| 6  | Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison. Applied Energy, 2019, 239, 1283-1293.                                                                               | 10.1 | 135       |
| 7  | Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants:<br>Measurement Results. Environmental Science & Technology, 2015, 49, 3219-3227.                                                                    | 10.0 | 133       |
| 8  | Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region.<br>Environmental Science & Technology, 2015, 49, 8147-8157.                                                                                             | 10.0 | 133       |
| 9  | Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector:<br>Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol.<br>Environmental Science & Technology, 2015, 49, 3252-3261. | 10.0 | 129       |
| 10 | Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites. Environmental Science & Technology, 2016, 50, 4877-4886.                                                                                                       | 10.0 | 105       |
| 11 | Solar PV output prediction from video streams using convolutional neural networks. Energy and Environmental Science, 2018, 11, 1811-1818.                                                                                                          | 30.8 | 104       |
| 12 | Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity. Journal of Industrial Ecology, 2020, 24, 11-25.                                                                        | 5.5  | 103       |
| 13 | Short-term solar power forecast with deep learning: Exploring optimal input and output configuration. Solar Energy, 2019, 188, 730-741.                                                                                                            | 6.1  | 97        |
| 14 | Variation in Methane Emission Rates from Well Pads in Four Oil and Gas Basins with Contrasting<br>Production Volumes and Compositions. Environmental Science & Technology, 2017, 51, 8832-8840.                                                    | 10.0 | 94        |
| 15 | Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements. Environmental Science & amp; Technology, 2017, 51, 7286-7294.                                                                   | 10.0 | 83        |
| 16 | Are Optical Gas Imaging Technologies Effective For Methane Leak Detection?. Environmental Science<br>& Technology, 2017, 51, 718-724.                                                                                                              | 10.0 | 81        |
| 17 | Carbon intensity of global crude oil refining and mitigation potential. Nature Climate Change, 2020,<br>10, 526-532.                                                                                                                               | 18.8 | 77        |
| 18 | Closing the methane gap in US oil and natural gas production emissions inventories. Nature Communications, 2021, 12, 4715.                                                                                                                         | 12.8 | 77        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Oil Depletion and the Energy Efficiency of Oil Production: The Case of California. Sustainability, 2011,<br>3, 1833-1854.                                                                                             | 3.2  | 76        |
| 20 | Review of mathematical models of future oil supply: Historical overview and synthesizing critique.<br>Energy, 2010, 35, 3958-3974.                                                                                    | 8.8  | 74        |
| 21 | Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North<br>Dakota. Environmental Science & Technology, 2017, 51, 5317-5325.                                                    | 10.0 | 74        |
| 22 | Variability and Uncertainty in Life Cycle Assessment Models for Greenhouse Gas Emissions from<br>Canadian Oil Sands Production. Environmental Science & Technology, 2012, 46, 1253-1261.                              | 10.0 | 70        |
| 23 | Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics. Environmental Science & Technology, 2013, 47, 5998-6006.                                          | 10.0 | 70        |
| 24 | The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010. Energy, 2013, 55, 693-702.                                                                                                     | 8.8  | 68        |
| 25 | A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and<br>Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios. Energies, 2011, 4,<br>1211-1245. | 3.1  | 66        |
| 26 | Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies.<br>Energy and Environmental Science, 2012, 5, 8631.                                                             | 30.8 | 64        |
| 27 | A better currency for investing in a sustainable future. Nature Climate Change, 2014, 4, 524-527.                                                                                                                     | 18.8 | 63        |
| 28 | Machine vision for natural gas methane emissions detection using an infrared camera. Applied Energy, 2020, 257, 113998.                                                                                               | 10.1 | 62        |
| 29 | CO <sub>2</sub> enhanced oil recovery: a catalyst for gigatonne-scale carbon capture and storage deployment?. Energy and Environmental Science, 2017, 10, 2594-2608.                                                  | 30.8 | 62        |
| 30 | "Good versus Good Enough?―Empirical Tests of Methane Leak Detection Sensitivity of a Commercial<br>Infrared Camera. Environmental Science & Technology, 2018, 52, 2368-2374.                                          | 10.0 | 58        |
| 31 | Well-to-refinery emissions and net-energy analysis of China's crude-oil supply. Nature Energy, 2018, 3,<br>220-226.                                                                                                   | 39.5 | 56        |
| 32 | Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic.<br>Atmospheric Chemistry and Physics, 2021, 21, 6605-6626.                                                          | 4.9  | 55        |
| 33 | Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S.<br>Petroleum Fuels. Environmental Science & Technology, 2015, 49, 8219-8227.                                            | 10.0 | 51        |
| 34 | Comparison of methane emission estimates from multiple measurement techniques at natural gas production pads. Elementa, 2017, 5, .                                                                                    | 3.2  | 49        |
| 35 | Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach. Energy, 2013, 62, 235-247.                                                                                     | 8.8  | 48        |
| 36 | Detection Limits of Optical Gas Imaging for Natural Gas Leak Detection in Realistic Controlled<br>Conditions. Environmental Science & Technology, 2020, 54, 11506-11514.                                              | 10.0 | 48        |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Quantifying Regional Methane Emissions in the New Mexico Permian Basin with a Comprehensive Aerial<br>Survey. Environmental Science & Technology, 2022, 56, 4317-4323.                   | 10.0 | 48        |
| 38 | Designing better methane mitigation policies: the challenge of distributed small sources in the natural gas sector. Environmental Research Letters, 2017, 12, 044023.                    | 5.2  | 45        |
| 39 | Climate impacts of oil extraction increase significantly with oilfield age. Nature Climate Change, 2017, 7, 551-556.                                                                     | 18.8 | 41        |
| 40 | Repeated leak detection and repair surveys reduce methane emissions over scale of years.<br>Environmental Research Letters, 2020, 15, 034029.                                            | 5.2  | 41        |
| 41 | Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field―<br>Simulator. Environmental Science & Technology, 2016, 50, 4546-4553.                     | 10.0 | 40        |
| 42 | Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities. Renewable and Sustainable Energy Reviews, 2022, 157, 111984.           | 16.4 | 40        |
| 43 | Optimization of carbon-capture-enabled coal-gas-solar power generation. Energy, 2015, 79, 149-162.                                                                                       | 8.8  | 39        |
| 44 | Energy Intensity and Greenhouse Gas Emissions from Tight Oil Production in the Bakken Formation.<br>Energy & Fuels, 2016, 30, 9613-9621.                                                 | 5.1  | 39        |
| 45 | Climate-wise choices in a world of oil abundance. Environmental Research Letters, 2018, 13, 044027.                                                                                      | 5.2  | 38        |
| 46 | Resampling and data augmentation for short-term PV output prediction based on an imbalanced sky<br>images dataset using convolutional neural networks. Solar Energy, 2021, 224, 341-354. | 6.1  | 37        |
| 47 | Natural Gas Emissions from Underground Pipelines and Implications for Leak Detection.<br>Environmental Science and Technology Letters, 2019, 6, 401-406.                                 | 8.7  | 34        |
| 48 | Potential solar energy use in the global petroleum sector. Energy, 2017, 118, 884-892.                                                                                                   | 8.8  | 33        |
| 49 | Constraining the accuracy of flux estimates using OTMÂ33A. Atmospheric Measurement Techniques, 2020, 13, 341-353.                                                                        | 3.1  | 33        |
| 50 | Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline.<br>Environmental Science & Technology, 2013, 47, 8031-8041.                       | 10.0 | 32        |
| 51 | Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based<br>Model of Oil Production. PLoS ONE, 2015, 10, e0144141.                               | 2.5  | 30        |
| 52 | Three considerations for modeling natural gas system methane emissions in life cycle assessment.<br>Journal of Cleaner Production, 2019, 222, 760-767.                                   | 9.3  | 30        |
| 53 | Net energy analysis of Bakken crude oil production using a well-level engineering-based model.<br>Energy, 2015, 93, 2191-2198.                                                           | 8.8  | 29        |
| 54 | How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on<br>Investment (EROI). BioPhysical Economics and Resource Quality, 2017, 2, 1.            | 2.4  | 29        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Comparing facility-level methane emission rate estimates at natural gas gathering and boosting stations. Elementa, 2017, 5, .                                                                                              | 3.2  | 29        |
| 56 | Optimal design and operations of a flexible oxyfuel natural gas plant. Energy, 2017, 141, 506-518.                                                                                                                         | 8.8  | 28        |
| 57 | Aerial Interyear Comparison and Quantification of Methane Emissions Persistence in the Bakken<br>Formation of North Dakota, USA. Environmental Science & Technology, 2018, 52, 8947-8953.                                  | 10.0 | 28        |
| 58 | Updating the U.S. Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 Using<br>Open-Source Engineering-Based Models. Environmental Science & Technology, 2017, 51, 977-987.                                 | 10.0 | 27        |
| 59 | Greenhouse-gas emissions of Canadian liquefied natural gas for use in China: Comparison and synthesis of three independent life cycle assessments. Journal of Cleaner Production, 2020, 258, 120701.                       | 9.3  | 27        |
| 60 | Single-blind test of airplane-based hyperspectral methane detection via controlled releases. Elementa, 2021, 9, .                                                                                                          | 3.2  | 25        |
| 61 | Methane Emissions from Gathering Compressor Stations in the U.S Environmental Science &<br>Technology, 2020, 54, 7552-7561.                                                                                                | 10.0 | 24        |
| 62 | Optimizing heat integration in a flexible coal–natural gas power station with CO2 capture.<br>International Journal of Greenhouse Gas Control, 2014, 31, 138-152.                                                          | 4.6  | 23        |
| 63 | Extreme events in time series aggregation: A case study for optimal residential energy supply systems.<br>Applied Energy, 2020, 275, 115223.                                                                               | 10.1 | 23        |
| 64 | Evaluation of next generation emission measurement technologies under repeatable test protocols.<br>Elementa, 2020, 8, .                                                                                                   | 3.2  | 23        |
| 65 | Energetic productivity dynamics of global super-giant oilfields. Energy and Environmental Science, 2017, 10, 1493-1504.                                                                                                    | 30.8 | 22        |
| 66 | Design and operations optimization of membrane-based flexible carbon capture. International Journal of Greenhouse Gas Control, 2019, 84, 154-163.                                                                          | 4.6  | 21        |
| 67 | Optimization-based technoeconomic analysis of molten-media methane pyrolysis for reducing industrial sector CO <sub>2</sub> emissions. Sustainable Energy and Fuels, 2020, 4, 4598-4613.                                   | 4.9  | 21        |
| 68 | Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model. PLoS ONE, 2017, 12, e0171083.                                                                        | 2.5  | 21        |
| 69 | Short-term solar PV forecasting using computer vision: The search for optimal CNN architectures for incorporating sky images and PV generation history. Journal of Renewable and Sustainable Energy, 2019, 11, .           | 2.0  | 19        |
| 70 | Assessment of advanced solvent-based post-combustion CO2 capture processes using a bi-objective optimization technique. Applied Energy, 2016, 179, 1209-1219.                                                              | 10.1 | 18        |
| 71 | A new carbon capture proxy model for optimizing the design and time-varying operation of a coal-natural gas power station. International Journal of Greenhouse Gas Control, 2016, 48, 234-252.                             | 4.6  | 18        |
| 72 | PV power output prediction from sky images using convolutional neural network: The comparison of<br>sky-condition-specific sub-models and an end-to-end model. Journal of Renewable and Sustainable<br>Energy, 2020, 12, . | 2.0  | 18        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | VideoCasNet: Deep learning for natural gas methane leak classification using an infrared camera.<br>Energy, 2022, 238, 121516.                                                                                                                            | 8.8  | 18        |
| 74 | Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach.<br>Environmental Science & Technology, 2014, 48, 10511-10518.                                                                                             | 10.0 | 16        |
| 75 | Uncertainty in Regional-Average Petroleum GHG Intensities: Countering Information Gaps with<br>Targeted Data Gathering. Environmental Science & Technology, 2015, 49, 679-686.                                                                            | 10.0 | 16        |
| 76 | Optimal design of an electricity-intensive industrial facility subject to electricity price uncertainty:<br>Stochastic optimization and scenario reduction. Chemical Engineering Research and Design, 2020, 163,<br>204-216.                              | 5.6  | 16        |
| 77 | A Methane Emission Estimation Tool (MEET) for predictions of emissions from upstream oil and gas<br>well sites with fine scale temporal and spatial resolution: Model structure and applications. Science<br>of the Total Environment, 2022, 829, 154277. | 8.0  | 16        |
| 78 | When Comparing Alternative Fuelâ€Vehicle Systems, Life Cycle Assessment Studies Should Consider<br>Trends in Oil Production. Journal of Industrial Ecology, 2017, 21, 244-248.                                                                            | 5.5  | 15        |
| 79 | Greenhouse Gas Emissions of Western Canadian Natural Gas: Proposed Emissions Tracking for Life<br>Cycle Modeling. Environmental Science & Technology, 2021, 55, 9711-9720.                                                                                | 10.0 | 15        |
| 80 | Carbon implications of marginal oils from market-derived demand shocks. Nature, 2021, 599, 80-84.                                                                                                                                                         | 27.8 | 15        |
| 81 | An Artificial Neural Network in Short-Term Electrical Load Forecasting of a University Campus: A Case<br>Study. Journal of Energy Resources Technology, Transactions of the ASME, 2013, 135, .                                                            | 2.3  | 14        |
| 82 | <i>GHGfrack</i> : An Open-Source Model for Estimating Greenhouse Gas Emissions from Combustion<br>of Fuel during Drilling and Hydraulic Fracturing. Environmental Science & Technology, 2016, 50,<br>7913-7920.                                           | 10.0 | 14        |
| 83 | Mitigating Communication Delays in Remotely Connected Hardware-in-the-Loop Experiments. IEEE<br>Transactions on Industrial Electronics, 2018, 65, 9739-9748.                                                                                              | 7.9  | 14        |
| 84 | Reproducibility of LCA Models of Crude Oil Production. Environmental Science & Technology, 2014, 48, 12978-12985.                                                                                                                                         | 10.0 | 13        |
| 85 | Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale. Energy<br>& Fuels, 2017, 31, 1440-1449.                                                                                                                        | 5.1  | 13        |
| 86 | Multiday Measurements of Pneumatic Controller Emissions Reveal the Frequency of Abnormal<br>Emissions Behavior at Natural Gas Gathering Stations. Environmental Science and Technology Letters,<br>2019, 6, 348-352.                                      | 8.7  | 13        |
| 87 | Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation. Applied Energy, 2021, 304, 117696.                                                                                                          | 10.1 | 13        |
| 88 | Accuracy of satellite-derived estimates of flaring volume for offshore oil and gas operations in nine countries. Environmental Research Communications, 2020, 2, 051006.                                                                                  | 2.3  | 13        |
| 89 | Displacing fishmeal with protein derived from stranded methane. Nature Sustainability, 2022, 5, 47-56.                                                                                                                                                    | 23.7 | 12        |
| 90 | Embodied Energy and GHG Emissions from Material Use in Conventional and Unconventional Oil and<br>Gas Operations. Environmental Science & Technology, 2015, 49, 13059-13066.                                                                              | 10.0 | 11        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Orphaned oil and gas well stimulus—Maximizing economic and environmental benefits. Elementa, 2021,<br>9, .                                                                                       | 3.2  | 11        |
| 92  | Microgrid generation units optimum dispatch for fuel consumption minimization. Journal of Ambient<br>Intelligence and Humanized Computing, 2013, 4, 685-701.                                     | 4.9  | 10        |
| 93  | Convolutional Neural Network for Short-term Solar Panel Output Prediction. , 2018, , .                                                                                                           |      | 10        |
| 94  | Improving robustness of LCA results through stakeholder engagement: A case study of emerging oil sands technologies. Journal of Cleaner Production, 2021, 281, 125277.                           | 9.3  | 9         |
| 95  | Sensor Placement Optimization Software Applied to Site-Scale Methane-Emissions Monitoring. Journal of Environmental Engineering, ASCE, 2020, 146, .                                              | 1.4  | 8         |
| 96  | A methane emissions reduction equivalence framework for alternative leak detection and repair programs. Elementa, 2019, 7, .                                                                     | 3.2  | 8         |
| 97  | TimeSeriesClustering: An extensible framework in Julia. Journal of Open Source Software, 2019, 4, 1573.                                                                                          | 4.6  | 7         |
| 98  | Overcoming barriers to direct current power: Lessons learned from four commercial building case studies. Energy Efficiency, 2021, 14, 1.                                                         | 2.8  | 7         |
| 99  | Modeling air emissions from complex facilities at detailed temporal and spatial resolution: The<br>Methane Emission Estimation Tool (MEET). Science of the Total Environment, 2022, 824, 153653. | 8.0  | 7         |
| 100 | Robust control of microgrid frequency with attached storage system. , 2013, , .                                                                                                                  |      | 6         |
| 101 | Optimizing rural village microgrids to provide affordable and reliable renewable electricity in developing countries. , 2017, , .                                                                |      | 6         |
| 102 | Methane Exhaust Measurements at Gathering Compressor Stations in the United States.<br>Environmental Science & Technology, 2021, 55, 1190-1196.                                                  | 10.0 | 6         |
| 103 | Estimating global oilfield-specific flaring with uncertainty using a detailed geographic database of oil and gas fields. Environmental Research Letters, 2021, 16, 124039.                       | 5.2  | 6         |
| 104 | Wind data introduce error in time-series reduction for capacity expansion modelling. Energy, 2022, 256, 124467.                                                                                  | 8.8  | 6         |
| 105 | Carbon Dioxide Emissions from Oil Shale Derived Liquid Fuels. ACS Symposium Series, 2010, , 219-248.                                                                                             | 0.5  | 5         |
| 106 | Data Analysis and Visualization for Electric Microgrids: A Case Study on the FortZED RDSI Microgrid. , 2013, , .                                                                                 |      | 5         |
| 107 | Blow wind blow: Capital deployment in variable energy systems. Energy, 2021, 224, 120198.                                                                                                        | 8.8  | 5         |
| 108 | Optimum generation units dispatch for fuel consumption minimization. , 2011, , .                                                                                                                 |      | 4         |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Statistical proxy modeling for life cycle assessment and energetic analysis. Energy, 2020, 194, 116882.                                                                                                             | 8.8  | 3         |
| 110 | Progress for On-Grid Renewable Energy Systems: Identification of Sustainability Factors for<br>Small-Scale Hydropower in Rwanda. Energies, 2021, 14, 826.                                                           | 3.1  | 3         |
| 111 | CapacityExpansion: A capacity expansion modeling framework in Julia. Journal of Open Source<br>Software, 2020, 5, 2034.                                                                                             | 4.6  | 3         |
| 112 | A community-scale microgrid demonstration: FortZED/RDSI. , 2012, , .                                                                                                                                                |      | 2         |
| 113 | Optimal selection of generators in a microgrid for fuel usage minimization. , 2013, , .                                                                                                                             |      | 2         |
| 114 | DC Approximate Models for Modeling Minigrid Systems. , 2018, , .                                                                                                                                                    |      | 2         |
| 115 | Response to Comment on "Variability and Uncertainty in Life Cycle Assessment Models for Greenhouse<br>Gas Emissions from Canadian Oil Sands Production― Environmental Science & Technology, 2012,<br>46, 4254-4254. | 10.0 | 1         |
| 116 | Constrained optimum generator dispatch for fuel consumption minimization. , 2013, , .                                                                                                                               |      | 1         |
| 117 | Roadmapping Minigrid Innovations for Cost Reduction. , 2019, , .                                                                                                                                                    |      | 1         |
| 118 | Can Modifications Make Electric Pressure Cookers â€~Minigrid Friendly?'. , 2020, , .                                                                                                                                |      | 1         |
| 119 | Functionalityâ€based life cycle assessment framework: An information and communication technologies (ICT) product case study. Journal of Industrial Ecology, 2022, 26, 782-800.                                     | 5.5  | 1         |
| 120 | Supplemental energy needed for wind integration. , 2013, , .                                                                                                                                                        |      | 0         |
| 121 | Improved exergetic life cycle assessment through matrix reduction technique. International Journal of Life Cycle Assessment, 2016, 21, 1379-1390.                                                                   | 4.7  | Ο         |
| 122 | Designing Optimal Network for Rural Electrification using Multiplier-accelerated A* Algorithm. , 2019, , .                                                                                                          |      | 0         |
| 123 | Optimizing Networked Rural Electrification Design using Adaptive Multiplier-Accelerated A* Algorithm. , 2020, , .                                                                                                   |      | 0         |
| 124 | Modeling the Winding Hot-Spot Temperature and Aging of Enclosed Vault Transformers using a Physics-Based Heat Transfer Model. , 2020, , .                                                                           |      | 0         |
| 125 | Big Data Analytics for Power Distribution Systems using AMI and Open Source Tools. , 2020, , .                                                                                                                      |      | Ο         |