Antonella Sistigu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	15.2	823
3	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
4	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. , 2020, 8, e000337.		610
5	An Immunosurveillance Mechanism Controls Cancer Cell Ploidy. Science, 2012, 337, 1678-1684.	6.0	367
6	Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350, 972-978.	6.0	367
7	Cyclophosphamide Synergizes with Type I Interferons through Systemic Dendritic Cell Reactivation and Induction of Immunogenic Tumor Apoptosis. Cancer Research, 2011, 71, 768-778.	0.4	304
8	Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Seminars in Immunopathology, 2011, 33, 369-383.	2.8	265
9	IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncolmmunology, 2017, 6, e1317420.	2.1	137
10	CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy. Cancer Research, 2014, 74, 436-445.	0.4	118
11	Trial Watch: Targeting ATM–CHK2 and ATR–CHK1 pathways for anticancer therapy. Molecular and Cellular Oncology, 2015, 2, e1012976.	0.3	117
12	Type I IFNs Control Antigen Retention and Survival of CD8α+ Dendritic Cells after Uptake of Tumor Apoptotic Cells Leading to Cross-Priming. Journal of Immunology, 2011, 186, 5142-5150.	0.4	110
13	Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncolmmunology, 2017, 6, e1314424.	2.1	106
14	Immunogenic stress and death of cancer cells: Contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunological Reviews, 2017, 280, 165-174.	2.8	82
15	Prerequisites for the Antitumor Vaccine-Like Effect of Chemotherapy and Radiotherapy. Cancer Journal (Sudbury, Mass), 2011, 17, 351-358.	1.0	75
16	Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine and Growth Factor Reviews, 2017, 36, 67-77.	3.2	71
17	Mutational and Antigenic Landscape in Tumor Progression and Cancer Immunotherapy. Trends in Cell Biology, 2019, 29, 396-416.	3.6	66
18	CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut. 2018. 67. 903-917.	6.1	64

ANTONELLA SISTIGU

#	Article	IF	CITATIONS
19	Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Frontiers in Immunology, 2020, 11, 2166.	2.2	60
20	IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment. Neoplasia, 2012, 14, 1223-IN43.	2.3	48
21	A multidisciplinary study using <i>in vivo</i> tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. Journal of Immunotoxicology, 2014, 11, 337-346.	0.9	48
22	The Immune Privilege of Cancer Stem Cells: A Key to Understanding Tumor Immune Escape and Therapy Failure. Cells, 2021, 10, 2361.	1.8	36
23	Disruption of IFN-I Signaling Promotes HER2/Neu Tumor Progression and Breast Cancer Stem Cells. Cancer Immunology Research, 2018, 6, 658-670.	1.6	34
24	Replication stress response in cancer stem cells as a target for chemotherapy. Seminars in Cancer Biology, 2018, 53, 31-41.	4.3	31
25	Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget, 2016, 7, 885-901.	0.8	31
26	Autocrine signaling of type 1 interferons in successful anticancer chemotherapy. OncoImmunology, 2015, 4, e988042.	2.1	27
27	The added value of type I interferons to cytotoxic treatments of cancer. Cytokine and Growth Factor Reviews, 2017, 36, 89-97.	3.2	25
28	The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. Biology, 2021, 10, 856.	1.3	21
29	Macrophages Transmit Human Immunodeficiency Virus Type 1 Products to CD4-Negative Cells: Involvement of Matrix Metalloproteinase 9. Journal of Virology, 2007, 81, 9078-9087.	1.5	20
30	Trial watch – inhibiting PARP enzymes for anticancer therapy. Molecular and Cellular Oncology, 2016, 3, e1053594.	0.3	19
31	Control of replication stress and mitosis in colorectal cancer stem cells through the interplay of PARP1, MRE11 and RAD51. Cell Death and Differentiation, 2021, 28, 2060-2082.	5.0	19
32	Tumor-Intrinsic or Drug-Induced Immunogenicity Dictates the Therapeutic Success of the PD1/PDL Axis Blockade. Cells, 2020, 9, 940.	1.8	8
33	The Targeting of MRE11 or RAD51 Sensitizes Colorectal Cancer Stem Cells to CHK1 Inhibition. Cancers, 2021, 13, 1957.	1.7	8
34	Human immunodeficiency virus type 1 (HIV-1) protease inhibitors block cell-to-cell HIV-1 endocytosis in dendritic cells. Journal of General Virology, 2009, 90, 2777-2787.	1.3	6
35	Mesenchymal traits at the convergence of tumor-intrinsic and -extrinsic mechanisms of resistance to immune checkpoint blockers. Emerging Topics in Life Sciences, 2017, 1, 471-486.	1.1	5
36	Microfluidic Co-Culture Models for Dissecting the Immune Response in in vitro Tumor Microenvironments. Journal of Visualized Experiments, 2021, , .	0.2	5

#	Article	IF	CITATIONS
37	LTX-315, CAPtivating immunity with necrosis. Cell Cycle, 2016, 15, 1176-1177.	1.3	3
38	Assessment of IFN-γ and granzyme-B production by in "sitro―technology. Methods in Enzymology, 2020, 631, 391-414.	0.4	3
39	Actin Cytoskeleton Dynamics and Type I IFN-Mediated Immune Response: A Dangerous Liaison in Cancer?. Biology, 2021, 10, 913.	1.3	2
40	Cytofluorometric assessment of dendritic cell-mediated uptake of cancer cell apoptotic bodies. Methods in Enzymology, 2020, 632, 39-54.	0.4	1
41	Molecular Mechanisms of Immunogenic Cell Death. , 2017, , .		0