
Tudor Borza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3605958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic diversity and detection of atypical porcine pestivirus infections. Journal of Animal Science, 2022, 100, .	0.2	2
2	2 5' Untranslated Region-Based Detection of Genetically Diverse APPV Strains in US Midwest. Journal of Animal Science, 2022, 100, 6-7.	0.2	0
3	A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 1971.	1.8	4
4	Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum. Ecotoxicology and Environmental Safety, 2021, 210, 111873.	2.9	11
5	Seaweed-Based Compounds and Products for Sustainable Protection against Plant Pathogens. Marine Drugs, 2021, 19, 59.	2.2	44
6	Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. Ecotoxicology and Environmental Safety, 2020, 190, 110048.	2.9	22
7	Assessing the suppressive effects of biopesticides and phosphite on common scab development in potatoes. Biocontrol Science and Technology, 2020, 30, 1133-1149.	0.5	2
8	Low Mannitol Concentrations in Arabidopsis thaliana Expressing Ectocarpus Genes Improve Salt Tolerance. Plants, 2020, 9, 1508.	1.6	10
9	Detection of atypical porcine pestivirus genome in newborn piglets affected by congenital tremor and high preweaning mortality1. Journal of Animal Science, 2019, 97, 4093-4100.	0.2	10
10	Effects of phosphite on the in vitro growth of Verticillium nonalfalfae and Verticillium dahliae and on their in vivo ability to infect potato plants. European Journal of Plant Pathology, 2019, 155, 1333-1344.	0.8	6
11	Verticillium dahliae and Verticillium nonalfalfae occurrence and abundance in several agricultural fields from Nova Scotia, Canada, assessed by real-time quantitative PCR. European Journal of Plant Pathology, 2019, 154, 1171-1177.	0.8	2
12	Biostimulant and fungicidal effects of phosphite assessed by GC-TOF-MS analysis of potato leaf metabolome. Physiological and Molecular Plant Pathology, 2019, 106, 49-56.	1.3	32
13	Incidence and abundance of Verticillium dahliae in soil from various agricultural fields in Prince Edward Island, Canada. European Journal of Plant Pathology, 2018, 151, 825-830.	0.8	10
14	Synaptogyrin-2 influences replication of Porcine circovirus 2. PLoS Genetics, 2018, 14, e1007750.	1.5	28
15	Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE, 2018, 13, e0206221.	1.1	54
16	Phosphite uptake and distribution in potato tubers following foliar and postharvest applications of phosphite-based fungicides for late blight control. Annals of Applied Biology, 2017, 170, 127-139.	1.3	15
17	DNA Markers for Selection of Late Blight Resistant Potato Breeding Lines. American Journal of Plant Sciences, 2017, 08, 1197-1209.	0.3	10
18	Carrageenans from Red Seaweeds As Promoters of Growth and Elicitors of Defense Response in Plants. Frontiers in Marine Science, 2016, 3, .	1.2	129

Tudor Borza

#	Article	IF	CITATIONS
19	Red Seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down Regulate Virulence Factors of Salmonella Enteritidis and Induce Immune Responses in Caenorhabditis elegans. Frontiers in Microbiology, 2016, 7, 421.	1.5	35
20	Ion chromatography analysis of phosphite uptake and translocation by potato plants: Dose-dependent uptake and inhibition of Phytophthora infestans development. Crop Protection, 2014, 56, 74-81.	1.0	25
21	Long Distance Linkage Disequilibrium and Limited Hybridization Suggest Cryptic Speciation in Atlantic Cod. PLoS ONE, 2014, 9, e106380.	1.1	37
22	Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish. Evolutionary Applications, 2013, 6, 450-461.	1.5	136
23	Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. Journal of Proteomics, 2013, 93, 207-223.	1.2	83
24	Intersubunit Ionic Interactions Stabilize the Nucleoside Diphosphate Kinase of Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e57867.	1.1	12
25	Similar Relative Mutation Rates in the Three Genetic Compartments of Mesostigma and Chlamydomonas. Protist, 2012, 163, 105-115.	0.6	32
26	Evaluating SNP ascertainment bias and its impact on population assignment in Atlantic cod, <i>Gadus morhua</i> . Molecular Ecology Resources, 2011, 11, 218-225.	2.2	59
27	An Integrated Approach to Gene Discovery and Marker Development in Atlantic Cod (Gadus morhua). Marine Biotechnology, 2011, 13, 242-255.	1.1	37
28	Development and Experimental Validation of a 20K Atlantic Cod (Gadus morhua) Oligonucleotide Microarray Based on a Collection of over 150,000 ESTs. Marine Biotechnology, 2011, 13, 733-750.	1.1	41
29	Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua). BMC Genomics, 2010, 11, 191.	1.2	120
30	Integrating the markers Pan I and haemoglobin with the genetic linkage map of Atlantic cod (Gadus) Tj ETQqO O () rgBT /Ov	erlock 10 Tf
31	Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3725-3734.	1.2	206
32	Atlantic cod (Gadus morhua) CC chemokines: Diversity and expression analysis. Developmental and Comparative Immunology, 2010, 34, 904-913.	1.0	27
33	Atlantic cod (Gadus morhua) hemoglobin genes: multiplicity and polymorphism. BMC Genetics, 2009, 10, 51.	2.7	33
34	MITOCHONDRIAL DNA IN THE <i>OOGAMOCHLAMYS</i> CLADE (CHLOROPHYCEAE): HIGH GC CONTENT AND UNIQUE GENOME ARCHITECTURE FOR GREEN ALGAE ¹ . Journal of Phycology, 2009, 45, 1323-1334.	1.0	12
35	Structural and nucleotide-binding properties of YajQ and YnaF, two Escherichia coli proteins of unknown function. Protein Science, 2008, 11, 2551-2560.	3.1	33
36	Tracing the Evolution of the Light-Harvesting Antennae in Chlorophyll a/b-Containing Organisms. Plant Physiology, 2007, 143, 1802-1816.	2.3	179

Tudor Borza

#	Article	IF	CITATIONS
37	Cavitation as a Mechanism of Substrate Discrimination by Adenylosuccinate Synthetasesâ€,‡. Biochemistry, 2006, 45, 11703-11711.	1.2	7
38	A Land Plant–Specific Multigene Family in the Unicellular Mesostigma Argues for Its Close Relationship to Streptophyta. Molecular Biology and Evolution, 2006, 23, 1011-1015.	3.5	31
39	Evolutionary Rates and Expression Level in Chlamydomonas. Genetics, 2006, 172, 1567-1576.	1.2	37
40	Multiple Metabolic Roles for the Nonphotosynthetic Plastid of the Green Alga Prototheca wickerhamii. Eukaryotic Cell, 2005, 4, 253-261.	3.4	65
41	Variations in the Response of Mouse Isozymes of Adenylosuccinate Synthetase to Inhibitors of Physiological Relevance. Journal of Biological Chemistry, 2003, 278, 6673-6679.	1.6	15
42	Regulation of Expression of the 2-Deoxy- d -Ribose Utilization Regulon, deoQKPX , from Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2003, 185, 6042-6050.	1.0	23
43	IMP, GTP, and 6-Phosphoryl-IMP Complexes of Recombinant Mouse Muscle Adenylosuccinate Synthetase. Journal of Biological Chemistry, 2002, 277, 26779-26787.	1.6	25
44	Feedback Inhibition and Product Complexes of Recombinant Mouse Muscle Adenylosuccinate Synthetase. Journal of Biological Chemistry, 2002, 277, 40536-40543.	1.6	11
45	1H, 13C and 15N resonance assignment of YajQ, a protein of unknown structure and function from Escherichia coli. Journal of Biomolecular NMR, 2001, 20, 287-288.	1.6	2
46	Recombinant Mouse Muscle Adenylosuccinate Synthetase. Journal of Biological Chemistry, 2001, 276, 42146-42152.	1.6	19
47	Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from different species. VIII. Adult and fetal guinea pig (Cavia procellus). Comparative Haematology International, 1995, 5, 106-111.	0.5	16
48	Diffusional water permeability of mammalian red blood cells. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 653-659.	0.7	53
49	NMR studies of diffusional water permeability of red blood cells from the echidna Tachyglossus aculeatus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1994, 107, 45-50.	0.2	5
50	Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from sheep and cow. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 104, 589-594.	0.2	9
51	Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from different species. V—Rabbit (Oryctolagus Cuniculus). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 106, 281-285.	0.2	11
52	Comparative nuclear magnetic resonance studies on water diffusional permeability of red blood cells from mice and rats. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 104, 491-495.	0.7	24