## Ulrik FahnÃ,e

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3605922/publications.pdf Version: 2024-02-01



Πιρικ Ελιινά ε

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | HCV genome-wide analysis for development of efficient culture systems and unravelling of antiviral resistance in genotype 4. Gut, 2022, 71, 627-642.                                                                                                             | 12.1 | 7         |
| 2  | Analysis of Neutralization Titers against SARS-CoV-2 in Health-Care Workers Vaccinated with<br>Prime-Boost mRNA–mRNA or Vector–mRNA COVID-19 Vaccines. Vaccines, 2022, 10, 75.                                                                                   | 4.4  | 8         |
| 3  | Versatile SARS-CoV-2 Reverse-Genetics Systems for the Study of Antiviral Resistance and Replication.<br>Viruses, 2022, 14, 172.                                                                                                                                  | 3.3  | 18        |
| 4  | High recombination rate of hepatitis C virus revealed by a green fluorescent protein reconstitution cell system. Virus Evolution, 2022, 8, veab106.                                                                                                              | 4.9  | 1         |
| 5  | Neutralization and receptor use of infectious culture–derived rat hepacivirus as a model for HCV.<br>Hepatology, 2022, 76, 1506-1519.                                                                                                                            | 7.3  | 8         |
| 6  | Novel hepatitis B virus reverse transcriptase mutations in patients with sustained viremia despite<br>long-term tenofovir treatment. Journal of Clinical Virology, 2022, 150-151, 105159.                                                                        | 3.1  | 2         |
| 7  | A Distinct Dexamethasone-Dependent Gene Expression Profile in the Lungs of COVID-19 Patients.<br>Journal of Infectious Diseases, 2022, 226, 2137-2141.                                                                                                           | 4.0  | 3         |
| 8  | Global evolutionary analysis of chronic hepatitis C patients revealed significant effect of baseline<br>viral resistance, including novel nonâ€target sites, for DAAâ€based treatment and retreatment outcome.<br>Journal of Viral Hepatitis, 2021, 28, 302-316. | 2.0  | 7         |
| 9  | SARS-CoV-2 Production in a Scalable High Cell Density Bioreactor. Vaccines, 2021, 9, 706.                                                                                                                                                                        | 4.4  | 14        |
| 10 | Overcoming Culture Restriction for SARS-CoV-2 in Human Cells Facilitates the Screening of<br>Compounds Inhibiting Viral Replication. Antimicrobial Agents and Chemotherapy, 2021, 65, e0009721.                                                                  | 3.2  | 58        |
| 11 | Pathogenesis, MicroRNAâ€122 Geneâ€Regulation, and Protective Immune Responses After Acute Equine<br>Hepacivirus Infection. Hepatology, 2021, 74, 1148-1163.                                                                                                      | 7.3  | 14        |
| 12 | In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Scientific Reports, 2021, 11, 14571.                                                                                                                                                       | 3.3  | 53        |
| 13 | Inferior cure rate in pilot study of 4â€week glecaprevir/pibrentasvir treatment with or without<br>ribavirin of chronic hepatitis C. Liver International, 2021, 41, 2601-2610.                                                                                   | 3.9  | 9         |
| 14 | Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for<br>Treatment of SARS-CoV-2 <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0268020.                                                    | 3.2  | 28        |
| 15 | Neutralisation titres against SARS-CoV-2 are sustained 6 months after onset of symptoms in individuals with mild COVID-19. EBioMedicine, 2021, 71, 103519.                                                                                                       | 6.1  | 13        |
| 16 | Efficacy of Ion-Channel Inhibitors Amantadine, Memantine and Rimantadine for the Treatment of SARS-CoV-2 In Vitro. Viruses, 2021, 13, 2082.                                                                                                                      | 3.3  | 18        |
| 17 | Characterization of a Novel Hepatitis C Virus Genotype 1 Subtype from a Patient Failing 4 Weeks of<br>Glecaprevir-Pibrentasvir Treatment. Microbiology Resource Announcements, 2021, 10, e0075521.                                                               | 0.6  | 2         |
| 18 | Ribavirin inhibition of cell-culture infectious hepatitis C genotype 1-3 viruses is strain-dependent.<br>Virology, 2020, 540, 132-140.                                                                                                                           | 2.4  | 10        |

Ulrik FahnÃ,e

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Development of a downstream process for the production of an inactivated whole hepatitis C virus vaccine. Scientific Reports, 2020, 10, 16261.                                                                                         | 3.3 | 23        |
| 20 | Equine pegiviruses cause persistent infection of bone marrow and are not associated with hepatitis.<br>PLoS Pathogens, 2020, 16, e1008677.                                                                                             | 4.7 | 17        |
| 21 | Analysis of Virus Population Profiles within Pigs Infected with Virulent Classical Swine Fever Viruses:<br>Evidence for Bottlenecks in Transmission but Absence of Tissue-Specific Virus Variants. Journal of<br>Virology, 2020, 94, . | 3.4 | 2         |
| 22 | Mutations Identified in the Hepatitis C Virus (HCV) Polymerase of Patients with Chronic HCV Treated<br>with Ribavirin Cause Resistance and Affect Viral Replication Fidelity. Antimicrobial Agents and<br>Chemotherapy, 2020, 64, .    | 3.2 | 7         |
| 23 | Influence of baseline resistance on treatment outcome in patients treated for chronic hepatitis C in<br>Denmark: a nationwide study. Journal of Hepatology, 2020, 73, S335.                                                            | 3.7 | 0         |
| 24 | Identification of Novel Determinants of Neutralization Epitope Shielding for Hepatitis C Virus in<br>Vitro. Proceedings (mdpi), 2020, 50, .                                                                                            | 0.2 | 0         |
| 25 | Identification of specific amino acid residues in the border disease virus glycoprotein E2 that modify<br>virus growth in pig cells but not in sheep cells. Journal of General Virology, 2020, 101, 1170-1181.                         | 2.9 | 2         |
| 26 | Virus Adaptation and Selection Following Challenge of Animals Vaccinated against Classical Swine<br>Fever Virus. Viruses, 2019, 11, 932.                                                                                               | 3.3 | 8         |
| 27 | Evolutionary Pathways to Persistence of Highly Fit and Resistant Hepatitis C Virus Protease Inhibitor<br>Escape Variants. Hepatology, 2019, 70, 771-787.                                                                               | 7.3 | 46        |
| 28 | HCV genotype 1-6 NS3 residue 80 substitutions impact protease inhibitor activity and promote viral escape. Journal of Hepatology, 2019, 70, 388-397.                                                                                   | 3.7 | 34        |
| 29 | Full-Length Open Reading Frame Amplification of Hepatitis C Virus. Methods in Molecular Biology, 2019, 1911, 85-91.                                                                                                                    | 0.9 | 16        |
| 30 | Direct acting antiviral treatment of chronic hepatitis C in Denmark: factors associated with and barriers to treatment initiation. Scandinavian Journal of Gastroenterology, 2018, 53, 849-856.                                        | 1.5 | 16        |
| 31 | HCV Genotype 6a Escape From and Resistance to Velpatasvir, Pibrentasvir, and Sofosbuvir in Robust<br>Infectious Cell Culture Models. Gastroenterology, 2018, 154, 2194-2208.e12.                                                       | 1.3 | 41        |
| 32 | Outcome and adverse events in patients with chronic hepatitis C treated with direct-acting antivirals:<br>a clinical randomized study. European Journal of Gastroenterology and Hepatology, 2018, 30, 1177-1186.                       | 1.6 | 7         |
| 33 | High density Huh7.5 cell hollow fiber bioreactor culture for high-yield production of hepatitis C virus and studies of antivirals. Scientific Reports, 2018, 8, 17505.                                                                 | 3.3 | 10        |
| 34 | Strategy for efficient generation of numerous full-length cDNA clones of classical swine fever virus for haplotyping. BMC Genomics, 2018, 19, 600.                                                                                     | 2.8 | 3         |
| 35 | A near full-length open reading frame next generation sequencing assay for genotyping and identification of resistance-associated variants in hepatitis C virus. Journal of Clinical Virology, 2018, 105, 49-56.                       | 3.1 | 9         |
| 36 | Ribavirin-induced mutagenesis across the complete open reading frame of hepatitis C virus genotypes<br>1a and 3a. Journal of General Virology, 2018, 99, 1066-1077.                                                                    | 2.9 | 12        |

Ulrik FahnÃ,e

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites.<br>Nucleic Acids Research, 2017, 45, 13016-13028.                                          | 14.5 | 14        |
| 38 | Mouse models of acute and chronic hepacivirus infection. Science, 2017, 357, 204-208.                                                                                                            | 12.6 | 99        |
| 39 | Deoxynucleoside Salvage in Fission Yeast Allows Rescue of Ribonucleotide Reductase Deficiency but<br>Not Spd1-Mediated Inhibition of Replication. Genes, 2017, 8, 128.                           | 2.4  | 5         |
| 40 | Determinants of the VP1/2A junction cleavage by the 3C protease in foot-and-mouth disease virus-infected cells. Journal of General Virology, 2017, 98, 385-395.                                  | 2.9  | 16        |
| 41 | A fast and robust method for whole genome sequencing of the Aleutian Mink Disease Virus (AMDV)<br>genome. Journal of Virological Methods, 2016, 234, 43-51.                                      | 2.1  | 8         |
| 42 | Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs. Veterinary Microbiology, 2016, 192, 123-134.                               | 1.9  | 3         |
| 43 | Creation of Functional Viruses from Non-Functional cDNA Clones Obtained from an RNA Virus<br>Population by the Use of Ancestral Reconstruction. PLoS ONE, 2015, 10, e0140912.                    | 2.5  | 15        |
| 44 | Spd2 assists Spd1 in modulation of RNR architecture but does not regulate deoxynucleotide pools.<br>Journal of Cell Science, 2014, 127, 2460-70.                                                 | 2.0  | 11        |
| 45 | Complete Genome Sequence of Classical Swine Fever Virus Genotype 2.2 Strain Bergen. Genome<br>Announcements, 2014, 2, .                                                                          | 0.8  | 0         |
| 46 | Complete Genome Sequence of Border Disease Virus Genotype 3 Strain Gifhorn. Genome<br>Announcements, 2014, 2, .                                                                                  | 0.8  | 4         |
| 47 | Studies on genetic diversity of bovine viral diarrhea viruses in Danish cattle herds. Virus Genes, 2014,<br>48, 376-380.                                                                         | 1.6  | 4         |
| 48 | Rescue of the highly virulent classical swine fever virus strain "Koslov―from cloned cDNA and first<br>insights into genome variations relevant for virulence. Virology, 2014, 468-470, 379-387. | 2.4  | 18        |
| 49 | Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA. BMC Genomics, 2013, 14, 819.  | 2.8  | 9         |
| 50 | A fast and robust method for full genome sequencing of Porcine Reproductive and Respiratory<br>Syndrome Virus (PRRSV) Type 1 and Type 2. Journal of Virological Methods, 2013, 193, 697-705.     | 2.1  | 27        |
| 51 | Analysis of classical swine fever virus RNA replication determinants using replicons. Journal of General Virology, 2013, 94, 1739-1748.                                                          | 2.9  | 24        |