Weihan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/36057/publications.pdf

Version: 2024-02-01

48 papers

4,913 citations

36 h-index 205818 48 g-index

49 all docs

49 docs citations

49 times ranked 6277 citing authors

#	Article	IF	CITATIONS
1	Confined Amorphous Red Phosphorus in MOFâ€Derived Nâ€Doped Microporous Carbon as a Superior Anode for Sodiumâ€Ion Battery. Advanced Materials, 2017, 29, 1605820.	11.1	409
2	Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. Nano Letters, 2016, 16, 1546-1553.	4. 5	360
3	Nanoconfined Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₃ Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1402104.	10.2	305
4	Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale, 2014, 6, 693-698.	2.8	251
5	Siâ€, Geâ€, Snâ€Based Anode Materials for Lithiumâ€lon Batteries: From Structure Design to Electrochemical Performance. Small Methods, 2017, 1, 1600037.	4.6	237
6	A Flexible Porous Carbon Nanofibersâ€Selenium Cathode with Superior Electrochemical Performance for Both Liâ€Se and Naâ€Se Batteries. Advanced Energy Materials, 2015, 5, 1401377.	10.2	230
7	FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27804-27809.	4.0	213
8	A General Strategy to Fabricate Carbonâ€Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for Highâ€Performance Lithium and Sodium Ion Batteries. Advanced Science, 2015, 2, 1500200.	5 . 6	193
9	Cobaltâ€Doped SnS ₂ with Dual Active Centers of Synergistic Absorptionâ€Catalysis Effect for Highâ€S Loading Liâ€S Batteries. Advanced Functional Materials, 2019, 29, 1806724.	7.8	186
10	Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode. Nanoscale, 2014, 6, 9579.	2.8	153
11	Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dualâ€Doped Carbon Network. Small, 2016, 12, 2559-2566.	5.2	147
12	Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78, 455-462.	5.4	146
13	Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 13882-13906.	5.2	134
14	An Airâ€Stable and Dendriteâ€Free Li Anode for Highly Stable Allâ€Solidâ€State Sulfideâ€Based Li Batteries. Advanced Energy Materials, 2019, 9, 1902125.	10.2	133
15	Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy, 2015, 13, 693-701.	8.2	124
16	Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Science China Materials, 2016, 59, 287-321.	3.5	124
17	Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries. Journal of Power Sources, 2015, 281, 461-469.	4.0	116
18	Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. Nanoscale, 2014, 6, 4532-4537.	2.8	113

#	Article	IF	CITATIONS
19	Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy, 2015, 18, 12-19.	8.2	97
20	Carbonâ€Coated Germanium Nanowires on Carbon Nanofibers as Selfâ€Supported Electrodes for Flexible Lithiumâ€ion Batteries. Small, 2015, 11, 2762-2767.	5.2	85
21	A flexible S1â^xSex@porous carbon nanofibers (xâ‰ 0 .1) thin film with high performance for Li-S batteries and room-temperature Na-S batteries. Energy Storage Materials, 2016, 5, 50-57.	9.5	85
22	Recent progress in Li–S and Li–Se batteries. Rare Metals, 2017, 36, 339-364.	3.6	84
23	Engineering nanostructured electrode materials for high performance sodium ion batteries: a case study of a 3D porous interconnected WS ₂ /C nanocomposite. Journal of Materials Chemistry A, 2015, 3, 20487-20493.	5.2	71
24	Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage. Small, 2015, 11, 5381-5387.	5.2	69
25	Advanced Highâ€Voltage Allâ€Solidâ€State Liâ€Ion Batteries Enabled by a Dualâ€Halogen Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2100836.	10.2	64
26	Synchrotronâ∈Based Xâ∈ray Absorption Fine Structures, Xâ∈ray Diffraction, and Xâ∈ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries. Small Methods, 2018, 2, 1700341.	4.6	62
27	Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. Electrochemistry Communications, 2015, 57, 43-47.	2.3	61
28	A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi ₂ (PO ₄) ₃ as an example. Nanoscale, 2015, 7, 14723-14729.	2.8	61
29	Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries. Journal of Power Sources, 2014, 266, 323-331.	4.0	60
30	Flexible copper-stabilized sulfur–carbon nanofibers with excellent electrochemical performance for Li–S batteries. Nanoscale, 2015, 7, 10940-10949.	2.8	58
31	Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale, 2014, 6, 7817.	2.8	54
32	N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. RSC Advances, 2014, 4, 16920-16927.	1.7	53
33	Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solidâ€State Na Metal Batteries. Advanced Functional Materials, 2020, 30, 2001118.	7.8	53
34	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 32360-32365.	4.0	50
35	Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Storage Materials, 2017, 9, 112-118.	9.5	44
36	New Insights into the Highâ€Performance Black Phosphorus Anode for Lithiumâ€ion Batteries. Advanced Materials, 2021, 33, e2101259.	11.1	41

#	Article	IF	CITATIONS
37	Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries. Scientific Reports, 2015, 5, 14146.	1.6	34
38	Understanding the Critical Role of Binders in Phosphorus/Carbon Anode for Sodiumâ€lon Batteries through Unexpected Mechanism. Advanced Functional Materials, 2020, 30, 2000060.	7.8	29
39	Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers. RSC Advances, 2014, 4, 25220.	1.7	24
40	Three-Dimensionally Interconnected TaS ₃ Nanowire Network as Anode for High-Performance Flexible Li-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5629-5633.	4.0	24
41	Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries. RSC Advances, 2014, 4, 58184-58189.	1.7	22
42	Highly reversible lithium storage in a 3D macroporous Ge@C composite. RSC Advances, 2014, 4, 37746-37751.	1.7	17
43	Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries. Nanoscale, 2018, 10, 12430-12435.	2.8	9
44	Influence of Carbon Matrix Dimensions on the Electrochemical Performance of Germanium Oxide in Lithiumâ€ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 524-530.	1.2	8
45	Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models. IEEE Transactions on Control Systems Technology, 2022, 30, 680-695.	3.2	8
46	Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chemistry of Materials, 2021, 33, 2029-2036.	3.2	8
47	Metal Sulphides: A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries (Adv. Sci. 12/2015). Advanced Science, 2015, 2, .	5.6	1
48	Sodium-Ion Batteries: Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage (Small 40/2015). Small, 2015, 11, 5330-5330.	5.2	0