Jia Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360566/publications.pdf

Version: 2024-02-01

279798 302126 1,687 67 23 39 citations h-index g-index papers 67 67 67 1359 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. Journal of Biomechanics, 2007, 40, 693-696.	2.1	133
2	Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 726-741.	6.6	110
3	Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model. Annals of Biomedical Engineering, 2008, 36, 262-275.	2.5	101
4	On the prospect of patient-specific biomechanics without patient-specific properties of tissues. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 27, 154-166.	3.1	92
5	A multi-mode Gaussian-based two-step floating catchment area method for measuring accessibility of urban parks. Cities, 2020, 105, 102815.	5. 6	85
6	Inverse method of stress analysis for cerebral aneurysms. Biomechanics and Modeling in Mechanobiology, 2008, 7, 477-486.	2.8	82
7	Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms. Chemistry - A European Journal, 2018, 24, 8167-8177.	3.3	68
8	Computational method of inverse elastostatics for anisotropic hyperelastic solids. International Journal for Numerical Methods in Engineering, 2007, 69, 1239-1261.	2.8	57
9	Landscape ecology, land-use structure, and population density: Case study of the Columbus Metropolitan Area. Landscape and Urban Planning, 2012, 105, 74-85.	7.5	51
10	Fluid–structure interaction methods in biological flows with special emphasis on heart valve dynamics. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 435-470.	2.1	49
11	Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation. ELife, 2019, 8, .	6.0	48
12	An Experimentally Derived Stress Resultant Shell Model for Heart Valve Dynamic Simulations. Annals of Biomedical Engineering, 2006, 35, 30-44.	2.5	46
13	Local mechanical properties of human ascending thoracic aneurysms. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 235-249.	3.1	44
14	Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation. PLoS Pathogens, 2020, 16, e1008250.	4.7	41
15	Nonlinear Anisotropic Stress Analysis of Anatomically Realistic Cerebral Aneurysms. Journal of Biomechanical Engineering, 2007, 129, 88-96.	1.3	40
16	Dynamic cloth simulation by isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2014, 268, 475-493.	6.6	39
17	Patient-Specific Wall Stress Analysis in Cerebral Aneurysms Using Inverse Shell Model. Annals of Biomedical Engineering, 2010, 38, 478-489.	2.5	38
18	Digital image correlation-based point-wise inverse characterization of heterogeneous material properties of gallbladder <i>in vitro</i> . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140152.	2.1	34

#	Article	IF	CITATIONS
19	Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms. Biomechanics and Modeling in Mechanobiology, 2015, 14, 967-978.	2.8	34
20	Analysis of localized failure of single-wall carbon nanotubes. Computational Materials Science, 2006, 35, 432-441.	3.0	33
21	Circular element: Isogeometric elements of smooth boundary. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2391-2402.	6.6	31
22	Identifying heterogeneous anisotropic properties in cerebral aneurysms: a pointwise approach. Biomechanics and Modeling in Mechanobiology, 2011, 10, 177-189.	2.8	28
23	Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes—Part II: Experimental Validation. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	2.2	25
24	Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranesâ€"Part I: Theoretical and Computational Developments. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	2.2	24
25	Characteristics of thoracic aortic aneurysm rupture in vitro. Acta Biomaterialia, 2016, 42, 286-295.	8.3	24
26	A covariant formulation of anisotropic finite plasticity: theoretical developments. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 5339-5358.	6.6	21
27	A Shell-Based Inverse Approach of Stress Analysis in Intracranial Aneurysms. Annals of Biomedical Engineering, 2013, 41, 1505-1515.	2.5	19
28	Evaluation of dine-in restaurant location and competitiveness: Applications of gravity modeling in Jefferson County, Kentucky. Applied Geography, 2015, 60, 204-209.	3.7	19
29	Inverse formulation for geometrically exact stress resultant shells. International Journal for Numerical Methods in Engineering, 2008, 74, 1278-1302.	2.8	18
30	Cylindrical element: Isogeometric model of continuum rod. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 233-241.	6.6	18
31	Characterizing Heterogeneous Properties of Cerebral Aneurysms With Unknown Stress-Free Geometry: A Precursor to In Vivo Identification. Journal of Biomechanical Engineering, 2011, 133, 051008.	1.3	18
32	Machine learning–aided exploration of relationship between strength and elastic properties in ascending thoracic aneurysm. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2977.	2.1	17
33	Prediction of local strength of ascending thoracic aortic aneurysms. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104284.	3.1	17
34	Solving membrane stress on deformed configuration using inverse elastostatic and forward penalty methods. Computer Methods in Applied Mechanics and Engineering, 2016, 308, 134-150.	6.6	13
35	ZerNet: Convolutional Neural Networks on Arbitrary Surfaces Via Zernike Local Tangent Space Estimation. Computer Graphics Forum, 2020, 39, 204-216.	3.0	13
36	On the computation of Lyapunov exponents for forced vibration of a Lennard–Jones oscillator. Chaos, Solitons and Fractals, 2005, 23, 833-841.	5.1	12

#	Article	IF	CITATIONS
37	Estimation of vascular open configuration using finite element inverse elastostatic method. Engineering With Computers, 2009, 25, 49-59.	6.1	10
38	School-gentrifying community in the making in China: Its formation mechanisms and socio-spatial consequences. Habitat International, 2019, 93, 102045.	5.8	10
39	Estimating aortic thoracic aneurysm rupture risk using tension–strain data in physiological pressure range: an in vitro study. Biomechanics and Modeling in Mechanobiology, 2021, 20, 683-699.	2.8	10
40	Computing Lyapunov exponents of continuous dynamical systems: method of Lyapunov vectors. Chaos, Solitons and Fractals, 2005, 23, 1879-1892.	5.1	10
41	A covariant constitutive theory for anisotropic hyperelastic solids with initial strains. Mathematics and Mechanics of Solids, 2012, 17, 104-119.	2.4	9
42	The Spatial Equity of Nursing Homes in Changchun: A Multi-Trip Modes Analysis. ISPRS International Journal of Geo-Information, 2019, 8, 223.	2.9	9
43	Discrete gradient method in solid mechanics. International Journal for Numerical Methods in Engineering, 2008, 74, 619-641.	2.8	7
44	Blending NURBS and Lagrangian representations in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2013, 257, 117-125.	6.6	7
45	miR-155 induction is a marker of murine norovirus infection but does not contribute to control of replication in vivo. Wellcome Open Research, 2018, 3, 42.	1.8	7
46	Blending isogeometric and Lagrangian elements in three-dimensional analysis. Finite Elements in Analysis and Design, 2016, 112, 50-63.	3.2	6
47	Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1833-1850.	2.8	6
48	Uniaxial properties of ascending aortic aneurysms in light of effective stretch. Acta Biomaterialia, 2021, 136, 306-313.	8.3	6
49	Discrete gradient method over polygon mesh. International Journal for Numerical Methods in Engineering, 2009, 78, 505-527.	2.8	5
50	Point-cloud method for image-based biomechanical stress analysis. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1493-1506.	2.1	5
51	A covariance condition in finite plasticity and related constitutive results. Zeitschrift Fur Angewandte Mathematik Und Physik, 2006, 57, 313-323.	1.4	4
52	Landscape ecology, urban morphology, and CBDs: An analysis of the Columbus, Ohio Metropolitan Area. Applied Geography, 2015, 60, 301-307.	3.7	4
53	Application of Gravity Model for Restaurants in Lowndes County, Georgia. Papers in Applied Geography, 2016, 2, 326-341.	1.4	4
54	Determination of pattern allowances for steel castings using the finite element inverse deformation analysis. International Journal of Cast Metals Research, 2019, 32, 123-134.	1.0	4

#	Article	IF	CITATIONS
55	Employment Distribution and Land-Use Structure in the Metropolitan Area of Columbus, Ohio. Journal of the Urban Planning and Development Division, ASCE, 2015, 141, 04014040.	1.7	3
56	On referential and spatial formulations of inverse elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 189-207.	6.6	3
57	Determining the reference geometry of plastically deformed material body undergone monotonic loading and moderately large deformation. Finite Elements in Analysis and Design, 2017, 130, 1-11.	3.2	3
58	A New Geographical Cluster View on Passenger Vehicle Purchasing in Chinese Cities. ISPRS International Journal of Geo-Information, 2018, 7, 9.	2.9	3
59	Explicit consideration of fiber recruitment in vascular constitutive formulation using beta functions. Journal of the Mechanics and Physics of Solids, 2022, 163, 104837.	4.8	3
60	Exploring brand preference and its spatial patterns in the Chinese automobile market. Journal of Spatial Science, 2018, 63, 399-417.	1.5	2
61	Machine Learning Prediction of Tissue Strength and Local Rupture Risk in Ascending Thoracic Aortic Aneurysms. MCB Molecular and Cellular Biomechanics, 2019, 16, 50-52.	0.7	2
62	A stabilized formulation for discrete gradient method. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 860-873.	2.1	1
63	On anisotropy evolution in finite strain plasticity. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800065.	0.2	1
64	On strain-based rupture criterion for ascending aortic aneurysm: The role of fiber waviness. Acta Biomaterialia, 2022, 149, 51-59.	8.3	1
65	Image-based point-cloud Hamiltonian dynamic analysis for biomechanical systems. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1507-1523.	2.1	0
66	Inverse Formulation for Geometrically Exact Stress Resultant Shell., 2007,, 320-320.		0
67	Direct biomechanical modeling of trabecular bone using a nonlinear manifold-based volumetric representation. Proceedings of SPIE, 2017, , .	0.8	0