Nathan J Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3605364/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports, 2016, 6, 27226.	1.6	296
2	4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017, 20, 577-591.	8.3	292
3	Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale, 2015, 7, 14010-14022.	2.8	172
4	Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Materials Science and Engineering C, 2019, 99, 582-590.	3.8	167
5	Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Engineering - Part C: Methods, 2016, 22, 952-963.	1.1	128
6	Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale, 2017, 9, 5055-5062.	2.8	121
7	Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation. Scientific Reports, 2016, 6, 32876.	1.6	99
8	An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues. ACS Applied Materials & Interfaces, 2017, 9, 29430-29437.	4.0	98
9	Recent Progress in Interfacial Tissue Engineering Approaches for Osteochondral Defects. Annals of Biomedical Engineering, 2012, 40, 1628-1640.	1.3	83
10	Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study. Acta Biomaterialia, 2015, 14, 164-174.	4.1	70
11	Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Scientific Reports, 2016, 6, 21974.	1.6	70
12	Current developments in multifunctional smart materials for 3D/4D bioprinting. Current Opinion in Biomedical Engineering, 2017, 2, 67-75.	1.8	70
13	Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration. Cellular and Molecular Bioengineering, 2015, 8, 416-432.	1.0	66
14	A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions. Nanotechnology, 2016, 27, 315103.	1.3	62
15	3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology, 2016, 27, 414001.	1.3	62
16	Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach. Chemical Engineering Journal, 2018, 340, 15-23.	6.6	58
17	The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. Tissue Engineering - Part B: Reviews, 2020, 26, 272-283.	2.5	58
18	Electrospun Fibrous Scaffolds for Bone and Cartilage Tissue Generation: Recent Progress and Future Developments. Tissue Engineering - Part B: Reviews, 2012, 18, 478-486.	2.5	56

NATHAN J CASTRO

#	Article	IF	CITATIONS
19	Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Nanotechnology, 2013, 24, 365102.	1.3	56
20	Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation. Biomedical Materials (Bristol), 2013, 8, 065003.	1.7	42
21	Independent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs. Polymers, 2018, 10, 40.	2.0	41
22	Greater Osteoblast and Mesenchymal Stem Cell Adhesion and Proliferation on Titanium with Hydrothermally Treated Nanocrystalline Hydroxyapatite/Magnetically Treated Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 7692-7702.	0.9	40
23	Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration. PLoS ONE, 2015, 10, e0134729.	1.1	29
24	Directly Induced Neural Differentiation of Human Adipose-Derived Stem Cells Using Three-Dimensional Culture System of Conductive Microwell with Electrical Stimulation. Tissue Engineering - Part A, 2018, 24, 537-545.	1.6	28
25	Biomimetic biphasic 3â€D nanocomposite scaffold for osteochondral regeneration. AICHE Journal, 2014, 60, 432-442.	1.8	26
26	Additive biomanufacturing of scaffolds for breast reconstruction. Additive Manufacturing, 2019, 30, 100845.	1.7	24
27	Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration. Nanotechnology, 2017, 28, 382001.	1.3	22
28	Simulated Body Fluid Nucleation of Three-Dimensional Printed Elastomeric Scaffolds for Enhanced Osteogenesis. Tissue Engineering - Part A, 2016, 22, 940-948.	1.6	14
29	Nondestructive testing of native and tissue-engineered medical products: adding numbers to pictures. Trends in Biotechnology, 2022, 40, 194-209.	4.9	9
30	Type II Photoinitiator and Tuneable Poly(Ethylene Glycol)-Based Materials Library for Visible Light Photolithography. Tissue Engineering - Part A, 2020, 26, 292-304.	1.6	8
31	Synthesis and manufacture of photocrosslinkable poly(caprolactone)-based three-dimensional scaffolds for tissue engineering applications. Advances in Bioscience and Biotechnology (Print), 2011, 02, 167-173.	0.3	6
32	Chromatographic and Traditional Albumin Isotherms on Cellulose: A Model for Wound Protein Adsorption on Modified Cotton. Journal of Biomaterials Applications, 2012, 26, 939-961.	1.2	6
33	Nanotechnology and 3D Bioprinting for Neural Tissue Regeneration. , 2015, , 307-331.		6
34	Biomaterials and 3D Printing Techniques for Neural Tissue Regeneration. , 2016, , 1-24.		6
35	Conceptual design of a personalized radiation therapy patch for skin cancer. Current Directions in Biomedical Engineering, 2018, 4, 607-610.	0.2	6
36	Nanobiotechnology and Nanostructured Therapeutic Delivery Systems. Recent Patents on Biomedical Engineering, 2012, 5, 29-40.	0.5	5

NATHAN J CASTRO

#	Article	IF	CITATIONS
37	A multiwell applicator for conformal brachytherapy of superficial skin tumors: A simulation study. Skin Research and Technology, 2020, 26, 537-541.	0.8	5
38	Nanotechnology and 3D/4D Bioprinting for Neural Tissue Regeneration. , 2022, , 427-458.		4
39	Designification of Neurotechnological Devices through 3D Printed Functional Materials. Advanced Functional Materials, 2018, 28, 1703905.	7.8	3
40	Efficient Construction of Volar Wrist Splints. Hand, 2016, 11, 310-313.	0.7	2
41	Development of Biomimetic and Bioactive 3D Nanocomposite Scaffolds for Osteochondral Regeneration. , 2013, , .		1
42	Development of a Biomimetic Electrospun Microfibrous Scaffold With Multiwall Carbon Nanotubes for Cartilage Regeneration. , 2013, , .		1
43	Novel Biologically Inspired Nanostructured Scaffolds for Directing Chondrogenic Differentiation of Mesenchymal Stem Cells. Materials Research Society Symposia Proceedings, 2013, 1498, 59-66.	0.1	1
44	Cotton and Protein Interactions. , 2006, , 49-65.		0
45	Cell Sources and Nanotechnology for Neural Tissue Engineering. , 2016, , 207-226.		0