Stefan Rothenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3605088/publications.pdf

Version: 2024-02-01

34 papers

1,880 citations

279798 23 h-index 395702 33 g-index

39 all docs 39 docs citations

39 times ranked 2261 citing authors

#	Article	IF	CITATIONS
1	Maladaptation after a virus host switch leads to increased activation of the pro-inflammatory NF- $\hat{\mathbb{I}}^{\mathbb{R}}$ B pathway. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115354119.	7.1	9
2	Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathogens, 2021, 17, e1009183.	4.7	16
3	SARS-CoV-2 detection and genomic sequencing from hospital surface samples collected at UC Davis. PLoS ONE, 2021, 16, e0253578.	2.5	37
4	Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines, 2021, 9, 765.	3.2	49
5	Species-Specific Host–Virus Interactions: Implications for Viral Host Range and Virulence. Trends in Microbiology, 2020, 28, 46-56.	7.7	74
6	Rapid, Seamless Generation of Recombinant Poxviruses using Host Range and Visual Selection. Journal of Visualized Experiments, 2020, , .	0.3	7
7	Speciesâ€specific inhibition of antiviral protein kinase R by capripoxviruses and vaccinia virus. Annals of the New York Academy of Sciences, 2019, 1438, 18-29.	3.8	14
8	AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays. Electrophoresis, 2017, 38, 1515-1525.	2.4	18
9	Evolution of eIF2α Kinases: Adapting Translational Control to Diverse Stresses. , 2016, , 235-260.		7
10	Overexpression of eIF5 or its protein mimic 5MP perturbs eIF2 function and induces <i>ATF4</i> translation through delayed re-initiation. Nucleic Acids Research, 2016, 44, 8704-8713.	14.5	40
11	Myxoma virus M156 is a specific inhibitor of rabbit PKR but contains a loss-of-function mutation in Australian virus isolates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3855-3860.	7.1	45
12	Interaction between the tRNA-Binding and C-Terminal Domains of Yeast Gcn2 Regulates Kinase Activity In Vivo. PLoS Genetics, 2015, 11, e1004991.	3.5	35
13	Ectopic Expression of Vaccinia Virus E3 and K3 Cannot Rescue Ectromelia Virus Replication in Rabbit RK13 Cells. PLoS ONE, 2015, 10, e0119189.	2.5	7
14	Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression. Nucleic Acids Research, 2014, 42, 10321-10330.	14.5	24
15	Adaptive Gene Amplification As an Intermediate Step in the Expansion of Virus Host Range. PLoS Pathogens, 2014, 10, e1004002.	4.7	51
16	Enhanced Interaction between Pseudokinase and Kinase Domains in Gcn2 stimulates elF2 \hat{l} ± Phosphorylation in Starved Cells. PLoS Genetics, 2014, 10, e1004326.	3.5	22
17	Poxviruses and the evolution of host range and virulence. Infection, Genetics and Evolution, 2014, 21, 15-40.	2.3	204
18	A survey of host range genes in poxvirus genomes. Infection, Genetics and Evolution, 2013, 14, 406-425.	2.3	97

#	Article	IF	CITATIONS
19	Myxoma Virus Protein M029 Is a Dual Function Immunomodulator that Inhibits PKR and Also Conscripts RHA/DHX9 to Promote Expanded Host Tropism and Viral Replication. PLoS Pathogens, 2013, 9, e1003465.	4.7	58
20	The poxvirus C7L host range factor superfamily. Current Opinion in Virology, 2012, 2, 764-772.	5.4	23
21	Multiple elements in the eIF4G1 N-terminus promote assembly of eIF4G1•PABP mRNPs <i>in vivo</i> Journal, 2011, 30, 302-316.	7.8	85
22	Characterization of a ranavirus inhibitor of the antiviral protein kinase PKR. BMC Microbiology, 2011, 11, 56.	3.3	40
23	Human Cytomegalovirus Induces the Interferon Response via the DNA Sensor ZBP1. Journal of Virology, 2010, 84, 585-598.	3.4	178
24	Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors. Nature Structural and Molecular Biology, $2009, 16, 63-70$.	8.2	106
25	Archaeal alF2B Interacts with Eukaryotic Translation Initiation Factors elF2α and elF2Bα: Implications for alF2B Function and elF2B Regulation. Journal of Molecular Biology, 2009, 392, 701-722.	4.2	34
26	Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications. BMC Biology, 2008, 6, 12.	3.8	73
27	IFN \hat{I}^2 responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cellular Microbiology, 2008, 10, 2579-2588.	2.1	76
28	Single domain antibodies from llama effectively and specifically block T cell ectoâ€ADPâ€ribosyltransferase ART2.2 in vivo. FASEB Journal, 2007, 21, 3490-3498.	0.5	106
29	ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Research, 2006, 34, 5007-5020.	14.5	71
30	Characterization of multiple alleles of the T-cell differentiation marker ART2 (RT6) in inbred and wild rats. Immunogenetics, 2005, 57, 739-749.	2.4	1
31	A PKR-like eukaryotic initiation factor $2\hat{A}$ kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1602-1607.	7.1	154
32	Complex regulation of the human gene for the Z-DNA binding protein DLM-1. Nucleic Acids Research, 2002, 30, 993-1000.	14.5	54
33	DNA methylation contributes to tissue- and allele-specific expression of the T-cell differentiation marker RT6. Immunogenetics, 2001, 52, 231-241.	2.4	18
34	DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles. Immunological Reviews, 2001, 184, 286-298.	6.0	42