List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3604794/publications.pdf Version: 2024-02-01

MVDIAM RAES

#	Article	IF	CITATIONS
1	Peroxisomes Are Critical for the Development and Maintenance of B1 and Marginal Zone B Cells but Dispensable for Follicular B Cells and T Cells. Journal of Immunology, 2022, 208, 839-850.	0.8	9
2	Cell Type-Selective Loss of Peroxisomal \hat{l}^2 -Oxidation Impairs Bipolar Cell but Not Photoreceptor Survival in the Retina. Cells, 2022, 11, 161.	4.1	13
3	Renal tubular peroxisomes are dispensable for normal kidney function. JCI Insight, 2022, 7, .	5.0	6
4	A missense allele of PEX5 is responsible for the defective import of PTS2 cargo proteins into peroxisomes. Human Genetics, 2021, 140, 649-666.	3.8	6
5	Peroxisomal Multifunctional Protein 2 Deficiency Perturbs Lipid Homeostasis in the Retina and Causes Visual Dysfunction in Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 632930.	3.7	12
6	Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity. International Journal of Molecular Sciences, 2021, 22, 4101.	4.1	12
7	Slc25a17 Gene Trapped Mice: PMP34 Plays a Role in the Peroxisomal Degradation of Phytanic and Pristanic Acid. Frontiers in Cell and Developmental Biology, 2020, 8, 144.	3.7	17
8	Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5. Nature Communications, 2020, 11, 578.	12.8	66
9	Developmental and Degenerative Cerebellar Pathologies in Peroxisomal β-Oxidation Deficiency. Advances in Experimental Medicine and Biology, 2020, 1299, 105-115.	1.6	1
10	Constitutive IP3 signaling underlies the sensitivity of B-cell cancers to the Bcl-2/IP3 receptor disruptor BIRD-2. Cell Death and Differentiation, 2019, 26, 531-547.	11.2	69
11	Liver disease predominates in a mouse model for mild human Zellweger spectrum disorder. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2774-2787.	3.8	12
12	Deciphering the potential involvement of PXMP2 and PEX11B in hydrogen peroxide permeation across the peroxisomal membrane reveals a role for PEX11B in protein sorting. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 182991.	2.6	25
13	Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. Journal of Neuroinflammation, 2019, 16, 61.	7.2	20
14	Functional peroxisomes are required for β-cell integrity in mice. Molecular Metabolism, 2019, 22, 71-83.	6.5	27
15	Differential distribution of peroxisomal proteins points to specific roles of peroxisomes in the murine retina. Molecular and Cellular Biochemistry, 2019, 456, 53-62.	3.1	20
16	Peroxisomes can oxidize medium―and longâ€chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB Journal, 2019, 33, 4355-4364.	0.5	82
17	Peroxisomal Disorders and Retinal Degeneration. Advances in Experimental Medicine and Biology, 2019, 1185, 317-321.	1.6	8
18	Response to Notter and Meyer's Letter to the Editor Regarding Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration. Molecular Imaging and Biology, 2018, 20, 354-355.	2.6	0

#	Article	IF	CITATIONS
19	Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional proteinâ€⊋ deficiency. Brain Pathology, 2018, 28, 631-643.	4.1	10
20	Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration. Molecular Imaging and Biology, 2018, 20, 94-102.	2.6	88
21	Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal <i>β</i> â€oxidation deficiency. Immunology, 2018, 153, 342-356.	4.4	13
22	Neuronal Dysfunction and Behavioral Abnormalities Are Evoked by Neural Cells and Aggravated by Inflammatory Microglia in Peroxisomal β-Oxidation Deficiency. Frontiers in Cellular Neuroscience, 2018, 12, 136.	3.7	13
23	Mitochondrial disruption in peroxisome deficient cells is hepatocyte selective but is not mediated by common hepatic peroxisomal metabolites. Mitochondrion, 2018, 39, 51-59.	3.4	26
24	Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 972-990.	2.4	24
25	Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO Journal, 2017, 36, 2187-2203.	7.8	186
26	Inter-Subject Variability in OCT1 Activity in 27 Batches of Cryopreserved Human Hepatocytes and Association with OCT1 mRNA Expression and Genotype. Pharmaceutical Research, 2017, 34, 1309-1319.	3.5	4
27	Differential activities of peroxisomes along the mouse intestinal epithelium. Cell Biochemistry and Function, 2017, 35, 144-155.	2.9	8
28	Specific suppression of microgliosis cannot circumvent the severe neuropathology in peroxisomal Î ² -oxidation-deficient mice. Molecular and Cellular Neurosciences, 2017, 80, 123-133.	2.2	7
29	Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. ELife, 2017, 6, .	6.0	29
30	Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse. PLoS Genetics, 2017, 13, e1006825.	3.5	31
31	Brief Report: The Deletion of the Phosphatase Regulator NIPP1 Causes Progenitor Cell Expansion in the Adult Liver. Stem Cells, 2016, 34, 2256-2262.	3.2	10
32	Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency. Neurobiology of Disease, 2016, 94, 157-168.	4.4	15
33	Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner. Biochemical and Biophysical Research Communications, 2016, 474, 579-586.	2.1	26
34	Hepatic dysfunction in peroxisomal disorders. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 956-970.	4.1	58
35	Abl1 inhibitory contaminants leach from plastic tubes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 340-343.	5.2	3
36	Peroxisomal Disorders: A Review on Cerebellar Pathologies. Brain Pathology, 2015, 25, 663-678.	4.1	33

#	Article	IF	CITATIONS
37	The oxysterol and cholestenoic acid profile of mouse cerebrospinal fluid. Steroids, 2015, 99, 172-177.	1.8	19
38	Precise Anatomic Localization of Accumulated Lipids in <i>Mfp2</i> Deficient Murine Brains Through Automated Registration of SIMS Images to the Allen Brain Atlas. Journal of the American Society for Mass Spectrometry, 2015, 26, 948-957.	2.8	23
39	Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature, 2015, 520, 192-197.	27.8	466
40	ldentification of a chronic nonâ€neurodegenerative microglia activation state in a mouse model of peroxisomal βâ€oxidation deficiency. Glia, 2015, 63, 1606-1620.	4.9	45
41	Phytol is lethal for Amacr-deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1394-1405.	2.4	11
42	Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-11± independent proliferation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 285-298.	4.1	65
43	Role of AMACR (α-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice. Biochemical Journal, 2014, 461, 125-135.	3.7	15
44	Vaginal Expression of Efflux Transporters and the Potential Impact on the Disposition of Microbicides in Vitro and in Rabbits. Molecular Pharmaceutics, 2014, 11, 4405-4414.	4.6	14
45	Central nervous system pathology in MFP2 deficiency: Insights from general and conditional knockout mouse models. Biochimie, 2014, 98, 119-126.	2.6	14
46	Mouse Models with Peroxisome Biogenesis Defects. , 2014, , 17-36.		0
47	Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation. Neurobiology of Disease, 2013, 58, 258-269.	4.4	44
48	Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radical Biology and Medicine, 2013, 65, 882-894.	2.9	126
49	PXR/CYP3A4-Humanized Mice for Studying Drug–Drug Interactions Involving Intestinal P-Glycoprotein. Molecular Pharmaceutics, 2013, 10, 1056-1062.	4.6	31
50	Block of a subset of sodium channels exacerbates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2013, 261, 21-28.	2.3	11
51	Peroxisome deficient invertebrate and vertebrate animal models. Frontiers in Physiology, 2013, 4, 335.	2.8	32
52	Peroxisome deficient aP2–Pex5 knockout mice display impaired white adipocyte and muscle function concomitant with reduced adrenergic tone. Molecular Genetics and Metabolism, 2012, 107, 735-747.	1.1	19
53	Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1489-1500.	3.8	59
54	Gene-Targeting of Phd2 Improves Tumor Response to Chemotherapy and Prevents Side-Toxicity. Cancer Cell, 2012, 22, 263-277.	16.8	117

#	Article	IF	CITATIONS
55	Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system. Journal of Neuroinflammation, 2012, 9, 61.	7.2	54
56	Hepatosteatosis in peroxisome deficient liver despite increased β-oxidation capacity and impaired lipogenesis. Biochimie, 2011, 93, 1828-1838.	2.6	23
57	Alkyl-Glycerol Rescues Plasmalogen Levels and Pathology of Ether-Phospholipid Deficient Mice. PLoS ONE, 2011, 6, e28539.	2.5	104
58	Determination of OATP-, NTCP- and OCT-mediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. European Journal of Pharmaceutical Sciences, 2011, 43, 297-307.	4.0	54
59	A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity. FEBS Letters, 2011, 585, 2205-2211.	2.8	41
60	Carbohydrate Metabolism Is Perturbed in Peroxisome-deficient Hepatocytes Due to Mitochondrial Dysfunction, AMP-activated Protein Kinase (AMPK) Activation, and Peroxisome Proliferator-activated Receptor γ Coactivator 1α (PGC-1α) Suppression*. Journal of Biological Chemistry, 2011, 286, 42162-42179.	3.4	44
61	αâ€5ynuclein abnormalities in mouse models of peroxisome biogenesis disorders. Journal of Neuroscience Research, 2010, 88, 866-876.	2.9	36
62	Peroxisomes in zebrafish: distribution pattern and knockdown studies. Histochemistry and Cell Biology, 2010, 134, 39-51.	1.7	14
63	Ectopic recombination in the central and peripheral nervous system by <i>aP2/FABP4â€Cre</i> mice: Implications for metabolism research. FEBS Letters, 2010, 584, 1054-1058.	2.8	91
64	Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia, 2010, 58, 1532-1543.	4.9	67
65	Role of PPAR in Hepatic Carbohydrate Metabolism. PPAR Research, 2010, 2010, 1-12.	2.4	69
66	Loss or Silencing of the PHD1 Prolyl Hydroxylase Protects Livers of Mice Against Ischemia/Reperfusion Injury. Gastroenterology, 2010, 138, 1143-1154.e2.	1.3	108
67	Combined deficiency of peroxisomal β-oxidation and ether lipid synthesis in mice causes only minor cortical neuronal migration defects but severe hypotonia. Molecular Genetics and Metabolism, 2010, 100, 71-76.	1.1	18
68	Peroxisomes, Myelination, and Axonal Integrity in the CNS. Neuroscientist, 2009, 15, 367-379.	3.5	59
69	Oxygen Sensors at the Crossroad of Metabolism. Cell Metabolism, 2009, 9, 11-22.	16.2	251
70	Mitochondrial 2,4-dienoyl-CoA Reductase Deficiency in Mice Results in Severe Hypoglycemia with Stress Intolerance and Unimpaired Ketogenesis. PLoS Genetics, 2009, 5, e1000543.	3.5	47
71	Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nature Genetics, 2008, 40, 170-180.	21.4	433
72	Degradation of very long chain dicarboxylic polyunsaturated fatty acids in mouse hepatocytes, a peroxisomal process. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 400-405.	2.4	35

#	Article	IF	CITATIONS
73	Coordinate induction of PPARα and SREBP2 in multifunctional protein 2 deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 694-702.	2.4	35
74	Hungry for Blood Vessels: Linking Metabolism and Angiogenesis. Developmental Cell, 2008, 14, 313-314.	7.0	11
75	Absence of Functional Peroxisomes from Mouse CNS Causes Dysmyelination and Axon Degeneration. Journal of Neuroscience, 2008, 28, 4015-4027.	3.6	107
76	Metabolism and Therapeutic Angiogenesis. New England Journal of Medicine, 2008, 358, 2511-2512.	27.0	38
77	Tissue distribution of peroxisomes in zebrafish. , 2008, , 291-292.		0
78	On the presence of C2-ceramide in mammalian tissues: possible relationship to etherphospholipids and phosphorylation by ceramide kinase. Biological Chemistry, 2007, 388, 315-24.	2.5	27
79	β-Oxidation in hepatocyte cultures from mice with peroxisomal gene knockouts. Biochemical and Biophysical Research Communications, 2007, 357, 718-723.	2.1	44
80	Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. Journal of Neuroscience Research, 2007, 85, 58-72.	2.9	81
81	Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genetics, 2007, 39, 969-976.	21.4	294
82	Peroxisomal Multifunctional Protein-2 Deficiency Causes Motor Deficits and Glial Lesions in the Adult Central Nervous System. American Journal of Pathology, 2006, 168, 1321-1334.	3.8	46
83	Peroxisomal multifunctional protein-2: The enzyme, the patients and the knockout mouse model. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 973-994.	2.4	78
84	Farnesylation of Pex19p is not essential for peroxisome biogenesis in yeast and mammalian cells. Cellular and Molecular Life Sciences, 2006, 63, 1686-1699.	5.4	27
85	Generalised and conditional inactivation of Pex genes in mice. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1785-1793.	4.1	42
86	Peroxisomal Multifunctional Protein 2 Is Essential for Lipid Homeostasis in Sertoli Cells and Male Fertility in Mice. Endocrinology, 2006, 147, 2228-2236.	2.8	78
87	Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology, 2005, 41, 868-878.	7.3	170
88	Developmental Changes of Bile Acid Composition and Conjugation in L- and D-Bifunctional Protein Single and Double Knockout Mice. Journal of Biological Chemistry, 2005, 280, 18658-18666.	3.4	51
89	Mass spectrometric analysis of ceramide perturbations in brain and fibroblasts of mice and human patients with peroxisomal disorders. Rapid Communications in Mass Spectrometry, 2004, 18, 1569-1574.	1.5	41
90	Overexpression of Peroxisome Proliferator-activated Receptor-α (PPARα)-regulated Genes in Liver in the Absence of Peroxisome Proliferation in Mice Deficient in both I- and d-Forms of Enoyl-CoA Hydratase/Dehydrogenase Enzymes of Peroxisomal β-Oxidation System. Journal of Biological Chemistry, 2003, 278, 47232-47239.	3.4	56

#	Article	IF	CITATIONS
91	Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Human Molecular Genetics, 2003, 12, 2255-2267.	2.9	97
92	Neuronal Migration Depends on Intact Peroxisomal Function in Brain and in Extraneuronal Tissues. Journal of Neuroscience, 2003, 23, 9732-9741.	3.6	60
93	Lessons from Knockout Mice. I: Phenotypes of Mice with Peroxisome Biogenesis Disorders. Advances in Experimental Medicine and Biology, 2003, 544, 113-122.	1.6	7
94	Peroxisome Deficiency Does Not Result in Deficiency of Enzymes involved in Cholesterol Biosynthesis. Advances in Experimental Medicine and Biology, 2003, 544, 329-330.	1.6	4
95	The Neuronal Migration Defect in Mice with Zellweger Syndrome (<i>Pex5</i> Knockout) is not Caused by the Inactivity of Peroxisomal β-Oxidation. Journal of Neuropathology and Experimental Neurology, 2002, 61, 368-374.	1.7	45
96	Generation ofPex5-loxP mice allowing the conditional elimination of peroxisomes. Genesis, 2002, 32, 177-178.	1.6	28
97	Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. Journal of Lipid Research, 2002, 43, 90-98.	4.2	46
98	Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. Journal of Lipid Research, 2002, 43, 90-8.	4.2	33
99	Mitochondrial Alterations Caused by Defective Peroxisomal Biogenesis in a Mouse Model for Zellweger Syndrome (PEX5 Knockout Mouse). American Journal of Pathology, 2001, 159, 1477-1494.	3.8	183
100	Isoprenoid biosynthesis is not compromised in a Zellweger syndrome mouse model. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1532, 28-36.	2.4	20
101	Prenatal and postnatal development of peroxisomal lipid-metabolizing pathways in the mouse. Biochemical Journal, 2001, 353, 673.	3.7	29
102	Prenatal and postnatal development of peroxisomal lipid-metabolizing pathways in the mouse. Biochemical Journal, 2001, 353, 673-680.	3.7	44
103	Further insights into peroxisomal lipid breakdown via \hat{I}_{\pm} - and \hat{I}_{\pm} -oxidation. Biochemical Society Transactions, 2001, 29, 292-297.	3.4	23
104	lsoprenoid biosynthesis is not compromised in a Zellweger syndrome mouse model. Biochemical Society Transactions, 2001, 29, A26-A26.	3.4	1
105	Further insights into peroxisomal lipid breakdown via α- and β-oxidation. Biochemical Society Transactions, 2001, 29, 292.	3.4	7
106	Neuronal migration disorder in Zellweger mice is secondary to glutamate receptor dysfunction. Annals of Neurology, 2000, 48, 336-343.	5.3	55
107	Docosahexaenoic Acid Deficit Is Not a Major Pathogenic Factor in Peroxisome-Deficient Mice. Laboratory Investigation, 2000, 80, 31-35.	3.7	54
108	Do sphingoid bases interact with the peroxisome proliferator activated receptor α (PPAR-α)?. Cellular Signalling, 2000, 12, 475-479.	3.6	32

#	Article	IF	CITATIONS
109	Mouse Models for Peroxisome Biogenesis Disorders. Cell Biochemistry and Biophysics, 2000, 32, 229-237.	1.8	7
110	Inactivation of the Peroxisomal Multifunctional Protein-2 in Mice Impedes the Degradation of Not Only 2-Methyl-branched Fatty Acids and Bile Acid Intermediates but Also of Very Long Chain Fatty Acids. Journal of Biological Chemistry, 2000, 275, 16329-16336.	3.4	180
111	Neuronal migration disorder in Zellweger mice is secondary to glutamate receptor dysfunction. Annals of Neurology, 2000, 48, 336-43.	5.3	18
112	Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Medicine, 1999, 5, 1135-1142.	30.7	745
113	Identification and characterization of human PMP34, a protein closely related to the peroxisomal integral membrane protein PMP47 of Candida boidinii. FEBS Journal, 1998, 258, 332-338.	0.2	54
114	C-terminal tripeptide Ser-Asn-Leu (SNL) of human D-aspartate oxidase is a functional peroxisome-targeting signal. Biochemical Journal, 1998, 336, 367-371.	3.7	53
115	DNA Binding Preferences of PPARα/RXRα Heterodimers. Biochemical and Biophysical Research Communications, 1997, 233, 91-95.	2.1	22
116	A mouse model for Zellweger syndrome. Nature Genetics, 1997, 17, 49-57.	21.4	267
117	Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genetics, 1997, 17, 439-444.	21.4	621
118	Sequence requirements for high affinity retinoid X receptor-α homodimer binding. Molecular and Cellular Endocrinology, 1996, 119, 11-20.	3.2	28
119	Rat Pristanoyl-CoA Oxidase. cDNA Cloning and Recognition of its C-Terminal (SQL) by the Peroxisomal-Targeting Signal 1 Receptor. FEBS Journal, 1996, 239, 302-309.	0.2	28
120	Identification and Characterization of the Putative Human Peroxisomal C-terminal Targeting Signal Import Receptor. Journal of Biological Chemistry, 1995, 270, 7731-7736.	3.4	170
121	Antagonism of COUP-TF and PPARα-RXRα on the Activation of the Malic Enzyme Gene Promoter: Modulation by 9-cis-RA. Biochemical and Biophysical Research Communications, 1995, 215, 338-345.	2.1	28
122	A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements Molecular and Cellular Biology, 1994, 14, 1544-1552.	2.3	450
123	A New Orphan Member of the Nuclear Hormone Receptor Superfamily That Interacts with a Subset of Retinoic Acid Response Elements. Molecular and Cellular Biology, 1994, 14, 1544-1552.	2.3	174
124	Characterization of the Glucose-Dependent Release of Growth Hormone-Releasing Factor and Somatostatin from Superfused Rat Hypothalami. Neuroendocrinology, 1990, 51, 202-207.	2.5	30
125	Regulation and Cellular Localization of the Membrane Bound Thyrotropin-Releasing Hormone-Degrading Enzyme in Primary Cultures of Neuronal, Glial and Adenohypophyseal Cells*. Endocrinology, 1990, 127, 1224-1233.	2.8	63
126	Growth Hormone-Releasing Factor Secretion from Fetal Hypothalamic Cell Cultures Is Modulated by Forskolin, Phorbol Esters, and Muscimol*. Endocrinology, 1989, 124, 104-110.	2.8	21

#	Article	IF	CITATIONS
127	The Glucocorticoid Hormone Dexamethasone Reverses the Growth Hormone-Releasing Properties of the Cholinomimetic Carbachol*. Endocrinology, 1989, 124, 2625-2634.	2.8	19
128	Evidence for Regulatory Cell-to-Cell Communication with Gonadotrophs, Lactotrophs, and Folliculostellate Cells in Rat Pituitary Cell Aggregates. , 1987, , 163-175.		0
129	Evidence that Stimulation of Growth Hormone Release by Epinephrine and Vasoactive Intestinal Peptide Is Based on Cell-to-Cell Communication in the Pituitary*. Endocrinology, 1987, 120, 280-290.	2.8	71
130	Evidence for Functional Communication between Folliculo-Stellate Cells and Hormone-Secreting Cells in Perifused Anterior Pituitary Cell Aggregates*. Endocrinology, 1987, 120, 685-691.	2.8	172
131	Stimulation of Growth Hormone Release by Vasoactive Intestinal Peptide and Peptide PHI in Rat Anterior Pituitary Reaggregates. Neuroendocrinology, 1985, 40, 88-91.	2.5	42
132	β-Adrenergic Stimulation of Adenosine-3',5'-Monophosphate (c-AMP) Accumulation and of Prolactin and Growth Hormone Secretion in Rat Anterior Pituitary Cell Cultures. Neuroendocrinology, 1985, 40, 72-77.	2.5	25
133	β-Adrenergic Stimulation of Adenosine-3',5'-Monophosphate (c-AMP) in Primary Cultures of Rat Anterior Pituitary Cell Populations Separated by Unit Gravity Sedimentation. Neuroendocrinology, 1985, 40, 78-83.	2.5	29
134	Stimulation of Prolactin Secretion after Short Term or Pulsatile Exposure to Dopamine in Superfused Anterior Pituitary Cell Aggregates*. Endocrinology, 1984, 114, 1371-1378.	2.8	44
135	Influence of corticosteroids on prolactin release from anterior pituitary cell aggregates cultured in serum-free medium. differential effects on dopamine-induced inhibition, post-dopamine rebound and stimulation by TRH, Vasoactive Intestinal Peptide (VIP), angiotensinii and isoproterenol. The Journal of Steroid Biochemistry, 1984, 20, 197-202.	1.1	9
136	β2-receptors in the rat anterior pituitary mediate adrenergic stimulation of prolactin release. Life Sciences, 1984, 34, 1447-1454.	4.3	17
137	Î ² -ADRENERGIC STIMULATION OF PROLACTIN RELEASE FROM SUPERFUSED PITUITARY CELL AGGREGATES1. Endocrinology, 1982, 111, 356-358.	2.8	40